Free Access
Issue
Ann. For. Sci.
Volume 67, Number 4, June 2010
Article Number 408
Number of page(s) 10
DOI https://doi.org/10.1051/forest/2009128
Published online 02 April 2010
  • Bréda N., Cochard H., Dreyer E., and Granier A., 1993. Field comparison of transpiration, stomatal conductance and vulnerability to cavitation of Quercus petraea and Quercus robur under water stress. Ann. Sci. For. 50: 571–582. [CrossRef] [Google Scholar]
  • Campbell G.S., 1985. Soil physics with BASIC. Transport models for soil–plant systems, Elsevier Amsterdam, The Netherlands, 150 p. [Google Scholar]
  • Clearwater M.J., Meinzer F.C., Andrade J., Goldstein G., and Holbrook N.M., 1999. Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiol. 19: 681–687. [PubMed] [Google Scholar]
  • Closs R.L., 1958. The heat pulse method for measuring rate of sap flow in a plant stem. N. Z. J. Sci. 1: 281–288. [Google Scholar]
  • Dunlap F., 1912. The specific heat of wood. USDA Bull. No. 110, Washington, DC. [Google Scholar]
  • Delzon S., and Loustau D., 2005. Age-related decline in stand water use: sap flow and transpiration in a pine forest chronosequence. Agric. For. Meteorol. 129: 105–119. [CrossRef] [Google Scholar]
  • Goldstein G., Andrade J.L., Meinzer F.C., Holbrook N.M., Cavelier J., Jackson P., and Celis A., 1998. Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant Cell Environ. 21: 397–406. [Google Scholar]
  • Granier A., 1985. Une nouvelle méthod pour la mesure du flux de sève brute dans le tronc des arbres. Ann. Sci. For. 42: 193–200. [CrossRef] [EDP Sciences] [Google Scholar]
  • Granier A., 1987. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 3: 309–320. [CrossRef] [PubMed] [Google Scholar]
  • Granier A., Huc R., and Barigah S.T., 1996a. Transpiration of natural rain forest and its dependence on climatic factors. Agric. For. Meteorol. 78: 19–29. [CrossRef] [Google Scholar]
  • Granier A., Biron P., Bréda N., Pontailler J.-Y., and Saugier B., 1996b. Transpiration of trees and forest stands: short and long-term monitoring using sap flow methods. Global Change Biol., 2: 265–274. [CrossRef] [Google Scholar]
  • Granier A., Biron P., and Lemoine D., 2000. Water balance, transpiration and canopy conductance in two beech stands. Agric. For. Meteorol. 100: 291–308. [CrossRef] [Google Scholar]
  • Iida S., Kobayashi Y., and Tanaka T., 2003. Continuous and long-term measurement of sap flux using Granier method. J. Jpn. Soc. Hydrol. Water Resour. 16: 13–22. [CrossRef] [Google Scholar]
  • Iida S., Tanaka T., and Sugita M., 2005. Change of interception process due to the succession from Japanese red pine to evergreen oak. J. Hydrol. 315: 154–166. [CrossRef] [Google Scholar]
  • Iida S., Tanaka T., and Sugita M., 2006. Change of evapotranspiration components due to the succession from Japanese red pine to evergreen oak. J. Hydrol. 326: 166–180. [CrossRef] [Google Scholar]
  • Kobayashi Y., and Tanaka T., 1996. Estimations of the transpiration from the whole forest used by the data of sap flow rate. Proc. Ann. Meeting Japanese Assoc. Hydrol. Sci. 10: 50–53. [Google Scholar]
  • Kobayashi Y., and Tanaka T., 2001. Water flow and hydraulic characteristics of Japanese red pine and oak trees. Hydrol. Process. 15: 1731–1750. [CrossRef] [Google Scholar]
  • Kollmann F., and Malmquist L., 1956. Über die Wärmeleitzahl von Holz und. Holzwerkstoffen. Holz Roh- Werkst. 14: 201–204. [CrossRef] [Google Scholar]
  • Koshijima T., Sugihara H., Hamada R., Hukuyama M., and Fuse G., 1983. Kiso Mokuzai Kogaku (Basic Wood Engineering, revised edition). Bunkyo-Shuppan, Osaka, Japan, 569 p. (in Japanese). [Google Scholar]
  • Köstner B., Granier A., and Cermák J., 1998. Sapflow measurements in forest stands: methods and uncertainties. Ann. Sci. For. 55: 13–27. [Google Scholar]
  • Kumagai T., Aoki S., Nagasawa H., Mabuchi T., Kubota K., Inoue S., Utsumi Y., and Ostuki K., 2005. Effects of tree-to-tree and radial variations on sap flow estimates of transpiration in Japanese cedar. Agric. For. Meteorol. 135: 110–116. [CrossRef] [Google Scholar]
  • Lopez C.M.L., Saito H., Kobayashi Y., Shirota T., Iwahana G., Maximov T.C., and Fukuda M., 2007. Interannual environmental-soil thawing rate variation and its control on transpiration from Larix cajanderi, Central Yakutia, Eastern Siberia. J. Hydrol. 338: 251–260. [CrossRef] [Google Scholar]
  • Lu P., Müller W.J., and Chacko E.K., 2000. Spatial variations in xylem sap flux density in the trunk of orchard-grown, mature mango trees under changing soil water conditions. Tree Physiol. 20: 683–692. [PubMed] [Google Scholar]
  • Lu P., Urban L., and Zhao P., 2004. Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees, theory and practice. Acta Bot. Sin. 46: 631–646. [Google Scholar]
  • Maku T., 1961. Netsu to Mokuzai (Heat and Wood). Mokuzai Kogaku (Wood Engineering). In: Kajita S. (Ed.), Yoken’do, Tokyo, Japan, pp. 249–294 (in Japanese). [Google Scholar]
  • Marshall D.C., 1958. Measurement of sap flow in conifers by heat transport. Plant Physiol. 33: 385–396. [CrossRef] [PubMed] [Google Scholar]
  • Phillips N., Oren R., and Zimmerman R., 1996. Radial patterns of xylem sap flow in non-, diffuse- and ring-porous tree species. Plant Cell Environ. 19: 983–990. [Google Scholar]
  • Phillips N., Ryan M.G., Bond B.J., McDowell N.G., Hinckley T.M., and Čermák J., 2003. Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiol. 23: 237–245. [PubMed] [Google Scholar]
  • Wilson K.B., Hanson P.J., Mulholland P.J., Baldocchi D.D., and Wullschleger S.D., 2001. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agric. For. Meteorol. 106: 153–168. [CrossRef] [Google Scholar]
  • Zimmerman R., Schulze E.-D., Wirth C., Schulze E.-E., McDonald K.C., Vygodskaya N.N., and Ziegler W., 2000. Canopy transpiration in a chronosequence of Central Siberian pine forests. Global Change Biol. 6: 25–37. [CrossRef] [Google Scholar]