Free Access
Issue
Ann. For. Sci.
Volume 67, Number 4, June 2010
Article Number 407
Number of page(s) 10
DOI https://doi.org/10.1051/forest/2009127
Published online 02 April 2010
  • Alteyrac J., Cloutier A., and Zhang S.Y., 2006. Characterization of juvenile wood to mature wood transition age in black spruce (Picea mariana (Mill) B.S.P.) at different stand densities and sampling heights. Wood Sci. Technol. 40: 124–138 [CrossRef] [Google Scholar]
  • Aubréville A., 1937. Les forêts du Dahomey et du Togo, Bulletin du Comité d’études historiques 29: 1–113. [Google Scholar]
  • Behaghel I., 1999. État des plantations de teck (Tectona grandis L.f.) dans le monde. Bois For. Trop. 269: 5–18 [Google Scholar]
  • Bert D., and Danjon F., 2006. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). For. Ecol. Manage. 222: 279–295 [CrossRef] [Google Scholar]
  • Berthier S., Kokutse A.D., Stokes A., and Fourcaud T., 2001. Irregular heartwood formation in Maritime Pine (Pinus pinaster Ait): consequences for biomechanical and hydraulic tree functioning. Ann. Bot. 87: 19–25 [CrossRef] [Google Scholar]
  • Bhat K.M., 1995. A note on heartwood proportion and wood density of 8-year-old teak. Indian For. 121: 514–517 [Google Scholar]
  • Bhat K.M., Priya P.B., and Rugmini P., 2001. Characterisation of juvenile wood in teak, Wood Sci. Tech. 34: 517–532 [Google Scholar]
  • Bhat K.M., and Florence E.J.M., 2003. Natural decay resistance of juvenile teak wood grown in high input plantations. Holzforschung 57: 53–55 [Google Scholar]
  • Biondi F., and Waikul K., 2004. DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comp. Geo. 30: 303–311 [CrossRef] [Google Scholar]
  • Brienen R.J.W., and Zuidema P.A., 2005. Relating tree growth to rainfall in Bolivian rain forest: a test for six species using tree ring analysis. Oecologia 146: 1–12 [CrossRef] [PubMed] [Google Scholar]
  • Devall M.S. and Parresol B.R., 2005. A dendrochronological study of teak (Tectona grandis L.f., Verbenaceae) in Puerto Rico. In: Bhat K.M., Nair K.K.N., Bhat K.V., Muralidharan E.M., and Sharma J.K. (Eds.), International Conference of Quality Timber products of Teak from Sustainable Forest Management, Kerala Forest Research Institute, Peechi, India, pp. 499–505. [Google Scholar]
  • Dupuy B., Maître H.F., and Kanga N.A., 1999. Table de production du teck (Tectona grandis L. f.). L’exemple de la Côte d’Ivoire. Bois For. Trop. 261: 8–16 [Google Scholar]
  • Eckstein D., Krause C., and Bauch J., 1989. Dendroecological investigation of spruce trees (Picea abies (L.) Karst.) of different damage and canopy classes. Holzforschung 43: 411–417 [CrossRef] [Google Scholar]
  • Ern H., 1979. Die Vegetation Togos, Gliederrung, Gefährdung, Erhaltung. Willdenowia 9: 295–312 [Google Scholar]
  • FAO, 2001. Évaluation des ressources forestières mondiales 2000, Études FAO Forêts, N° 140. FAO, Rome, Italie. [Google Scholar]
  • Ferguston J.H.A., 1934. De Dikte van Kern en spinthout van den djati (Tectona grandis L.f.) (Thickness of heartwood and sapwood of teak). Mededeelingen van het Boschbouwproefstation 43: 1–19 [Google Scholar]
  • Fourcaud T., Blaise F., Lac P., Castéra P., and De Reffye P., 2003. Numerical modelling of shape regulation and growth stresses in trees, II-Implementation in the AMAPpara software and simulation of tree growth. Trees 17: 31–39 [CrossRef] [Google Scholar]
  • Fourcaud T., Zhang X., Stokes A.,Lambers H., and Körner C. 2008. Plant growth modelling and applications: the increasing importance of plant architecture in growth models. Ann. Bot. 101: 1053–1063. [CrossRef] [PubMed] [Google Scholar]
  • Fritts H.C., 1976. Tree rings and climate, Academic Press, London, 567 p. [Google Scholar]
  • Haupt M., Leithoff D., Meier D., Puls J., Richter H.G., and Faix O., 2003. Heartwood extractives and natural durability of plantation-grown teakwood (Tectona grandis L.) – a case study. Holz. Roh. Werkst. 61: 473–474 [CrossRef] [Google Scholar]
  • Hillis W.E., 1987. Heartwood and tree exudates, Springer Verlag, Berlin. [Google Scholar]
  • Kjaer E.D., Kajornsrichon S., and Lauridsen E.B., 1999. Heartwood, calcium and silica content in five provenances of teak (Tectona grandis). Silvae Genet. 48: 1–3 [Google Scholar]
  • Kokou K., 1998. Les mosaïques forestières au Sud du Togo: biodiversité, dynamique et activités humaines. Ph.D. thesis, Montpellier 2 University, France. [Google Scholar]
  • Kokutse A.D., 2002. Analyse de la qualité du bois de teck (Tectona grandis L.f.) en plantation au Togo: formation du bois de cœur, propriétés mécaniques et durabilité. Ph.D. thesis, Bordeaux I University, No. 2394, France. [Google Scholar]
  • Kokutse A.D., Baillères H., Stokes A., and Kokou K., 2004. Proportion and quality of heartwood in Togolese teak (Tectona grandis L.f.). For. Ecol. Manage. 189: 37–48 [CrossRef] [Google Scholar]
  • Kokutse A.D., Stokes A., Baillères H., Kokou K., and Baudassé C., 2006. Decay resistance of Togolese teak (Tectona grandis L.f.) heartwood and relationship with colour. Trees 20: 219–223 [CrossRef] [Google Scholar]
  • Longuetaud F., Mothe F., Leban J.M., and Mäkelä A., 2006. Picea abies sapwood width: variations within and between trees. Scand. J. For. Res. 21: 41–53 [CrossRef] [Google Scholar]
  • Medzegue M., Grelier S., M’Batchi B., Nziengui M., and Stokes A., 2007. Radial growth and characterization of juvenile and adult wood in plantation grown Okoumé (Aucoumea klaineana Pierre) from Gabon. Ann. For. Sci 64: 815–824 [CrossRef] [Google Scholar]
  • Meinzer F.C., Goldstein G., and Andrade J.L., 2001. Regulation of water flux through tropical forest canopy trees: do universal rules apply? Tree Physiol 21: 19–26 [PubMed] [Google Scholar]
  • Morataya R., Galloway G., Berninger F., and Kanninen M., 1999. Foliage biomass – sapwood (area and volume) relationships of Tectona grandis L.f. and Gmelina arborea Roxb.: silvicultural implications. For Ecol. Manage. 113: 231–239 [CrossRef] [Google Scholar]
  • Murphy J.O., 1994. A dendroclimatic study of teak from East Java, Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. Biol. Chem. Geol. Phys. Medic. Sci. 97: 183–199 [Google Scholar]
  • Okuyama T., Yamamoto H., Wahyudi I., Hadi Y.S., and Bhat K.M., 2000. Growth stresses and some wood quality attributed in planted teak. In: Proceedings of the IUFRO Congress, Kuala Lumpur, Malaysia. [Google Scholar]
  • Oosterbaan R.J., 2005. SegReg., Segmented Linear Regression, http://www.waterlog.info. [Google Scholar]
  • Pardé J. and Bouchon J., 1988. Dendrométrie, ENGREF, Nancy. [Google Scholar]
  • Pérez C., and Kanninen M., 2005. Effect of thinning on stem form and wood characteristics of teak (Tectona grandis) in a humid tropical site in Costa Rica. Silva. Fenn. 39: 217–225 [Google Scholar]
  • Piutti E., and Cescatti A., 1997. A quantitative analysis of the interactions between climatic respons and intraspecific competition in European beech. Can. J. For. Res. 27: 277–284 [Google Scholar]
  • Plauborg K.U., 2004. Analysis of radial growth responses to changes in stand density for four tree species. For. Ecol. Manage. 188: 65–75 [CrossRef] [Google Scholar]
  • Priya P.B., and Bhat K.M., 1998. False ring formation in teak (Tectona grandis L.f.) and the influence of environmental factors. For. Ecol. Manage. 108: 215–222 [CrossRef] [Google Scholar]
  • Pumijumnong N., Eckstein D., and Sass U., 1995. Tree-ring research on Tectona grandis in northern Thailand. IAWA J. 16: 385–392 [Google Scholar]
  • Rao K.S., and Rajput K.S., 1999. Seasonal behaviour of vascular cambium in teak (Tectona grandis) growing in moist deciduous and dry deciduous forests. IAWA J. 20: 85–93 [Google Scholar]
  • Reich P.B., Walters M.B., and Ellsworth D.S., 1997. From tropics to tundra: Global convergence in plant functioning. Proc. Natl. Acad. Sci. USA 94: 13730–13734 [CrossRef] [Google Scholar]
  • Rojas-Jiménez K., Holbrook N.M., and Gutiérrez-Soto M.V., 2007. Dry-season leaf flushing of Enterolobium cyclocarpum (ear-pod tree): above- and belowground phenology and water relations. Tree Physiol. 27: 1561–1568 [PubMed] [Google Scholar]
  • Rugmini P., and Jayaraman K., 2009. Intrinsic units of growth for teak trees. Trees 23: 51–58 [CrossRef] [Google Scholar]
  • Sahri M.H., Boupha L., Nobuchi T., and Jusoh M.Z., 1998. Wood quality assessment of plantation grown Azadirachta excelsa from Malaysia. IAWA J. 19: 476. [PubMed] [Google Scholar]
  • Sellin A., 1996. Sapwood amount in Picea abies (L) karst determined by tree age and radial growth rate. Holzforschung 50: 291–296 [CrossRef] [Google Scholar]
  • Shah S.K., Bhattacharyya A., and Chaudhary V., 2007. Reconstruction of June–September precipitation based on tree-ring data of teak (Tectona grandis L.) from Hoshangabad, Madhya Pradesh, India. Dendrochronologia 25: 57–64 [CrossRef] [Google Scholar]
  • Stokes A., and Berthier S., 2000. Irregular heartwood formation in Pinus pinaster Ait. is related to eccentric, radial, stem growth. For. Ecol. Manage. 135: 115–121 [CrossRef] [Google Scholar]
  • Stokes M.A. and Smiley T.L., 1968. An introduction to tree-ring dating, University of Chicago Press, Chicago. [Google Scholar]
  • Timell T.E., 1986. Compression wood in Gymnosperms, Springer Series in Wood Science, Berlin. [Google Scholar]
  • Trouet V., Coppin P., and Beeckman H., 2006. Annual growth ring patterns in Brachystegia spiciformis reveal influence of precipitation on tree growth. Biotropica 38: 375–382 [CrossRef] [Google Scholar]
  • Van Deusen P.C., 1990. A dynamic program for cross-dating tree rings. Can. J. For. Res. 20: 200–205 [CrossRef] [Google Scholar]
  • Wadsworth F.H., González E.G., Figueroa Colón, and J.C. Pérez J.L., 2003. Fifty-nine-year performance of planted big-leaf mahogany (Swietenia macrophylla King) in Puerto Rico. In: Big-Leaf Mahogany, Genetics, Ecology, and Management, Ecological Studies, Vol. 159, Springer, pp. 342–357. [Google Scholar]
  • Zobel J.B. and van Buijtenen J.P., 1989. Wood variation. Its causes and control, Springer, Series in Wood Science, Berlin. [Google Scholar]