Free Access
Ann. For. Sci.
Volume 67, Number 5, July-August 2010
Article Number 510
Number of page(s) 8
Published online 18 May 2010
  • Amorini E. and Fabbio G., 2002. Conversion to high forest and natural pattern into ageing Quercus cerris coppices. Results from 35 y of monitoring. The Caselli site (Tyrrhenian coast-Tuscany). Ann. Ist. Sper. Selv. 33: 79–104.
  • Amorini E., Bruschini S., Cutini A., Di Lorenzo M.G., and Fabbio G., 1996. Treatment of Turkey oak (Quercus cerris L.) coppices. Structure, biomass and silvicultural options. Ann. Ist. Sper. Selv. 27: 105–111.
  • Aussenac G. and Granier A., 1988. Effects of thinning on water stress and growth in Douglas fir. Can. J. For. Res. 60: 100–105.
  • Björkman O., 1981. Responses to different quantum flux densities. In: Lange O.L., Nobel P.S., Osmond C.B., and Ziegler H. (Eds.), Encyclopedia of Plant Physiology: New Series, Springer Verlag, Berlin, Vol. 12: pp. 57–107.
  • Borella N. and Leuenberger M., 1998. Reducing uncertainties in d13C analysis of the tree rings: pooling, milling and cellulose extraction. J. Geogr. Res. 103: 19519–19526. [CrossRef]
  • Bréda N., Granier A., and Aussenac G., 1995. Effects of thinning on soil water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol. 15: 295–306. [PubMed]
  • Brugnoli E. and Farquhar G.D., 2000. Photosynthetic fractionation of carbon isotopes. In: Leegood R.C., Sharkey T.D., and von Caemmerer S. (Eds.), Photosynthesis: physiology and metabolism, Advances in Photosynthesis, Boston, Kluwer Academic Publishers, pp. 399–434.
  • Canellãs I., Del Rio M., Roig S., and Montero G., 2004. Growth response to thinning in Quercus pyrenaica Willd. coppice stands in Spanish central mountains. Ann. For. Sci. 61: 243–250. [CrossRef] [EDP Sciences]
  • Cernusak L.A., Marshall J.D., Comstock J.P., and Balster N.G., 2001. Carbon isotope discrimination in photosynthetic bark. Oecologia 128: 24–35. [CrossRef] [PubMed]
  • Ciancio O., Corona P., Lamonaca A., Portoghesi L., and Travaglini D., 2006. Conversion of clearcut beech coppices into high forests with continuous cover: A case study in central Italy. For. Ecol. Manage. 224: 235–240. [CrossRef]
  • Cutini A., 2006. Coppice conversion cuts, coppicing and standards density: effects on canopy properties of Turkey oak coppice stands. Ann. Ist. Sper. Selv. 33: 21–30.
  • Cutini A. and Mascia V., 1998. Silvicultural treatment of holm oak (Quercus ilex L.) coppices in Southern Sardinia: effects of thinning on water potential, transpiration and stomatal conductance. Ann. Ist. Sper. Selv. 27: 47–53.
  • Ducrey M. and Huc R., 1999. Effects of thinning on growth and ecophysiology in an evergreen oak coppice. Rev. For. Fr. 51: 326–340. [CrossRef]
  • Farquhar G.D. and Richard R.A., 1984. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust. J. Plant Physiol. 11: 539–552. [CrossRef]
  • Farquhar G.D., O’Leary M.H., and Berry J.A., 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9: 121–137. [CrossRef]
  • Francey R.J., Allison C.E., Etheridge D.M., Trudinger C.M., Enting I.G., Leuenberger M., Langenfelds R.L., Michel E., and Steele L.P., 1999. A 1000-year high precision record of δ13C in atmospheric CO2. Tellus 51B: 170–193.
  • Fonti P., Cherubini P., Rigling A., Weber P., and Biging G., 2006. Tree-rings show competition dynamics in abandoned Castanea sativa coppices after land-use changes. J. Veg. Sci. 17: 103–112. [CrossRef]
  • Fotelli N.M., Rienks M., Rennemberg H., and Geβler A., 2003. Effect of climate and silvicultural on the carbon isotope composition of understorey species in a beech (Fagus sylvatica L.) forest. New Phytol. 159: 229–244. [CrossRef]
  • Geβler A., Schrempp S., Matzarakis A., Mayer H., Rennemberg H., and Adams M.A., 2001. Radiation modifies the effect of water availability on the carbon isotope composition of beech (Fagus sylvatica L.). New Phytol. 150: 653–664. [CrossRef]
  • Giannini R. and Piussi P., 1976. La conversion de taillis en futaie. L’expérience italienne. In: Proceedings XVI IUFRO World Congress, Oslo, Norway, pp. 388–396.
  • Keitel C., Adams M.A., Holst T., Matzarakis A., Mayer H., Rennemberg H., and Geβler A., 2003. Carbon and Oxygen isotope composition of organic compounds in the phloem sap provides a short-term measure for stomatal conductance of European beech (Fagus Sylvatica L.). Plant Cell Environ. 26: 1157–1168. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Leavitt S.W. and Long A., 1986. Influence of site disturbance on δ13C isotopic time series from tree-rings. In: Proceedings of the International Symposium of Ecological Aspects of Tree-Ring Analysis, Tarrytown, New York, pp. 119–129.
  • Lichtenthaler H.K., 1987. Chlorophylls and carotenoids: pigments of photosynthetic apparatus biomembranes. Meth. Enzymol. 148: 349–382.
  • Lopéz-Serrano F.R., Heras J. de Ias, Gonzalés-Ochoa A.I., and Garcìa-Morota F.A., 2005. Effects of silvicultural treatments and seasonal patterns on foliar nutrients in young post-fire Pinus halepensis forest stands. For. Ecol. Manage. 210: 321–336. [CrossRef]
  • Makineci E., 2001. Case studies on ecological effects of the improvement cuttings on coppice forests in Turkey. In: Proceedings Int. Conf. Forest Research: a challenge for an integrated European approach, Thessaloniki, Greece, 27 August–1 September 2001, Vol. I .
  • McDowell N., Henry D., Adams J., Bailey D., Marcey H., and Kolb T.E., 2006. Homeostatic Maintenance of Ponderosa Pine Gas Exchange in Response to stand density changes. Ecol. Appl. 16: 1164–1182. [CrossRef] [PubMed]
  • Moreno G. and Cubera E., 2008. Impact of stand density on water status and leaf gas exchange in Quercus ilex. For. Ecol. Manage. 254: 74–84. [CrossRef]
  • Ripullone F., Guerrieri M.R., Saurer M., Siegwolf R., Jäggi M., Guarini R., and Magnani F., 2009. Testing a dual isotope model to track carbon and water gas exchanges in a Mediterranean forest. iForest 2: 59–66. [CrossRef]
  • Robertson I., Waterhouse J.S., Barker A.C., Carter A.H.C., and Switsur V.R., 2001. Oxygen isotope ratios of oak in ast England:implications for reconstructing the isotopic composition of precipitation. Earth Planet. Sci. Lett. 191: 21–31. [CrossRef]
  • Skomarkova M.V., Vaganov E.A., Mund M., Knohl A., Linke P., Boerner A., and Schulze E.D., 2006. Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree-rings of beech (Fagus sylvatica) growing in Germany and Italy. Trees 20: 571–586. [CrossRef]
  • Stogsdill W.R., Wittwer R.F., Hennessey T.C., and Dougherty P.M., 1996. Water use in thinned loblolly pine plantations. For. Ecol. Manage. 50: 233–245. [CrossRef]
  • Thornthwaite C.W., 1948. An approach toward a natural classification of climate. Geogr. Rev. 58: 55–94. [CrossRef]
  • Walcroft S.A., Silvester W.B., Grace J.C., Carson S.D., and Waring R.H., (1996). Effects of branch length on carbon isotope discrimination in Pinus radiata. Tree Physiol. 16: 281–286. [PubMed]
  • Wallin K.F., Kolb T.E., Skov K.R., and Wagner M.R., 2004. Seven-year results of thinning and burning restoration treatments on old ponderosa pines at the Gus Pearson Natural Area. Rest. Ecol. 12: 239–247. [CrossRef]
  • Warren C.R., Mcgrath J.F., and Adams M.A., 2001. Water availability and carbon isotope discrimination in conifers. Oecologia 127: 476–486. [CrossRef] [PubMed]