Free Access
Ann. For. Sci.
Volume 67, Number 5, July-August 2010
Article Number 510
Number of page(s) 8
Published online 18 May 2010
  • Amorini E. and Fabbio G., 2002. Conversion to high forest and natural pattern into ageing Quercus cerris coppices. Results from 35 y of monitoring. The Caselli site (Tyrrhenian coast-Tuscany). Ann. Ist. Sper. Selv. 33: 79–104. [Google Scholar]
  • Amorini E., Bruschini S., Cutini A., Di Lorenzo M.G., and Fabbio G., 1996. Treatment of Turkey oak (Quercus cerris L.) coppices. Structure, biomass and silvicultural options. Ann. Ist. Sper. Selv. 27: 105–111. [Google Scholar]
  • Aussenac G. and Granier A., 1988. Effects of thinning on water stress and growth in Douglas fir. Can. J. For. Res. 60: 100–105. [Google Scholar]
  • Björkman O., 1981. Responses to different quantum flux densities. In: Lange O.L., Nobel P.S., Osmond C.B., and Ziegler H. (Eds.), Encyclopedia of Plant Physiology: New Series, Springer Verlag, Berlin, Vol. 12: pp. 57–107. [Google Scholar]
  • Borella N. and Leuenberger M., 1998. Reducing uncertainties in d13C analysis of the tree rings: pooling, milling and cellulose extraction. J. Geogr. Res. 103: 19519–19526. [CrossRef] [Google Scholar]
  • Bréda N., Granier A., and Aussenac G., 1995. Effects of thinning on soil water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol. 15: 295–306. [PubMed] [Google Scholar]
  • Brugnoli E. and Farquhar G.D., 2000. Photosynthetic fractionation of carbon isotopes. In: Leegood R.C., Sharkey T.D., and von Caemmerer S. (Eds.), Photosynthesis: physiology and metabolism, Advances in Photosynthesis, Boston, Kluwer Academic Publishers, pp. 399–434. [Google Scholar]
  • Canellãs I., Del Rio M., Roig S., and Montero G., 2004. Growth response to thinning in Quercus pyrenaica Willd. coppice stands in Spanish central mountains. Ann. For. Sci. 61: 243–250. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cernusak L.A., Marshall J.D., Comstock J.P., and Balster N.G., 2001. Carbon isotope discrimination in photosynthetic bark. Oecologia 128: 24–35. [CrossRef] [PubMed] [Google Scholar]
  • Ciancio O., Corona P., Lamonaca A., Portoghesi L., and Travaglini D., 2006. Conversion of clearcut beech coppices into high forests with continuous cover: A case study in central Italy. For. Ecol. Manage. 224: 235–240. [CrossRef] [Google Scholar]
  • Cutini A., 2006. Coppice conversion cuts, coppicing and standards density: effects on canopy properties of Turkey oak coppice stands. Ann. Ist. Sper. Selv. 33: 21–30. [Google Scholar]
  • Cutini A. and Mascia V., 1998. Silvicultural treatment of holm oak (Quercus ilex L.) coppices in Southern Sardinia: effects of thinning on water potential, transpiration and stomatal conductance. Ann. Ist. Sper. Selv. 27: 47–53. [Google Scholar]
  • Ducrey M. and Huc R., 1999. Effects of thinning on growth and ecophysiology in an evergreen oak coppice. Rev. For. Fr. 51: 326–340. [CrossRef] [Google Scholar]
  • Farquhar G.D. and Richard R.A., 1984. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Aust. J. Plant Physiol. 11: 539–552. [CrossRef] [Google Scholar]
  • Farquhar G.D., O’Leary M.H., and Berry J.A., 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9: 121–137. [Google Scholar]
  • Francey R.J., Allison C.E., Etheridge D.M., Trudinger C.M., Enting I.G., Leuenberger M., Langenfelds R.L., Michel E., and Steele L.P., 1999. A 1000-year high precision record of δ13C in atmospheric CO2. Tellus 51B: 170–193. [Google Scholar]
  • Fonti P., Cherubini P., Rigling A., Weber P., and Biging G., 2006. Tree-rings show competition dynamics in abandoned Castanea sativa coppices after land-use changes. J. Veg. Sci. 17: 103–112. [CrossRef] [Google Scholar]
  • Fotelli N.M., Rienks M., Rennemberg H., and Geβler A., 2003. Effect of climate and silvicultural on the carbon isotope composition of understorey species in a beech (Fagus sylvatica L.) forest. New Phytol. 159: 229–244. [CrossRef] [Google Scholar]
  • Geβler A., Schrempp S., Matzarakis A., Mayer H., Rennemberg H., and Adams M.A., 2001. Radiation modifies the effect of water availability on the carbon isotope composition of beech (Fagus sylvatica L.). New Phytol. 150: 653–664. [Google Scholar]
  • Giannini R. and Piussi P., 1976. La conversion de taillis en futaie. L’expérience italienne. In: Proceedings XVI IUFRO World Congress, Oslo, Norway, pp. 388–396. [Google Scholar]
  • Keitel C., Adams M.A., Holst T., Matzarakis A., Mayer H., Rennemberg H., and Geβler A., 2003. Carbon and Oxygen isotope composition of organic compounds in the phloem sap provides a short-term measure for stomatal conductance of European beech (Fagus Sylvatica L.). Plant Cell Environ. 26: 1157–1168. [CrossRef] [Google Scholar]
  • Leavitt S.W. and Long A., 1986. Influence of site disturbance on δ13C isotopic time series from tree-rings. In: Proceedings of the International Symposium of Ecological Aspects of Tree-Ring Analysis, Tarrytown, New York, pp. 119–129. [Google Scholar]
  • Lichtenthaler H.K., 1987. Chlorophylls and carotenoids: pigments of photosynthetic apparatus biomembranes. Meth. Enzymol. 148: 349–382. [Google Scholar]
  • Lopéz-Serrano F.R., Heras J. de Ias, Gonzalés-Ochoa A.I., and Garcìa-Morota F.A., 2005. Effects of silvicultural treatments and seasonal patterns on foliar nutrients in young post-fire Pinus halepensis forest stands. For. Ecol. Manage. 210: 321–336. [CrossRef] [Google Scholar]
  • Makineci E., 2001. Case studies on ecological effects of the improvement cuttings on coppice forests in Turkey. In: Proceedings Int. Conf. Forest Research: a challenge for an integrated European approach, Thessaloniki, Greece, 27 August–1 September 2001, Vol. I . [Google Scholar]
  • McDowell N., Henry D., Adams J., Bailey D., Marcey H., and Kolb T.E., 2006. Homeostatic Maintenance of Ponderosa Pine Gas Exchange in Response to stand density changes. Ecol. Appl. 16: 1164–1182. [CrossRef] [PubMed] [Google Scholar]
  • Moreno G. and Cubera E., 2008. Impact of stand density on water status and leaf gas exchange in Quercus ilex. For. Ecol. Manage. 254: 74–84. [CrossRef] [Google Scholar]
  • Ripullone F., Guerrieri M.R., Saurer M., Siegwolf R., Jäggi M., Guarini R., and Magnani F., 2009. Testing a dual isotope model to track carbon and water gas exchanges in a Mediterranean forest. iForest 2: 59–66. [CrossRef] [Google Scholar]
  • Robertson I., Waterhouse J.S., Barker A.C., Carter A.H.C., and Switsur V.R., 2001. Oxygen isotope ratios of oak in ast England:implications for reconstructing the isotopic composition of precipitation. Earth Planet. Sci. Lett. 191: 21–31. [CrossRef] [Google Scholar]
  • Skomarkova M.V., Vaganov E.A., Mund M., Knohl A., Linke P., Boerner A., and Schulze E.D., 2006. Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree-rings of beech (Fagus sylvatica) growing in Germany and Italy. Trees 20: 571–586. [CrossRef] [Google Scholar]
  • Stogsdill W.R., Wittwer R.F., Hennessey T.C., and Dougherty P.M., 1996. Water use in thinned loblolly pine plantations. For. Ecol. Manage. 50: 233–245. [CrossRef] [Google Scholar]
  • Thornthwaite C.W., 1948. An approach toward a natural classification of climate. Geogr. Rev. 58: 55–94. [CrossRef] [Google Scholar]
  • Walcroft S.A., Silvester W.B., Grace J.C., Carson S.D., and Waring R.H., (1996). Effects of branch length on carbon isotope discrimination in Pinus radiata. Tree Physiol. 16: 281–286. [PubMed] [Google Scholar]
  • Wallin K.F., Kolb T.E., Skov K.R., and Wagner M.R., 2004. Seven-year results of thinning and burning restoration treatments on old ponderosa pines at the Gus Pearson Natural Area. Rest. Ecol. 12: 239–247. [CrossRef] [Google Scholar]
  • Warren C.R., Mcgrath J.F., and Adams M.A., 2001. Water availability and carbon isotope discrimination in conifers. Oecologia 127: 476–486. [CrossRef] [PubMed] [Google Scholar]