Free Access
Issue
Ann. For. Sci.
Volume 67, Number 5, July-August 2010
Article Number 508
Number of page(s) 10
DOI https://doi.org/10.1051/forest/2010010
Published online 18 May 2010
  • Bower A.D. and Aitken S.N., 2008. Ecological genetics and seed transfer guidelines for Pinus albicaulis (Pinaceae). Am. J. Bot. 95: 66–76. [CrossRef] [PubMed] [Google Scholar]
  • Cavender-Bares J. and Bazzaz F.A., 2002. Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124: 8–18. [CrossRef] [Google Scholar]
  • Conifer Specialist Group, 1998. Austrocedrus chilensis. In: IUCN 2006. 2006 IUCN Red List of Threatened Species, www.iucnredlist.org, Downloaded on 31 August 2007. [Google Scholar]
  • Cordon V., Forquera J., and Gastiazoro J., 1993. Estudio microclimático del área cordillerana del sudoeste de la Provincia de Río Negro “cartas de precipitación”. Universidad Nac. del Comahue, Argentina, 19 p. [Google Scholar]
  • Cregg B.M., 1994. Carbon allocation, gas exchange, and needle morphology of Pinus ponderosa genotypes known to differ in growth and survival under imposed drought. Tree Physiol. 14: 883–898. [PubMed] [Google Scholar]
  • Falconer D.S. and Mackay T.F., 1996. Introduction to Quantitative Genetics. Longman, New York, 464 p. [Google Scholar]
  • Foster G.S., 1986. Trends in genetic parameters with stand development and their influence on early selection for volume growth in loblolly pine. For. Sci. 32: 944–959. [Google Scholar]
  • Gallo L., Pastorino M.J., and Donoso C., 2004. Variación en Austrocedrus chilensis (D. Don) Pic. Ser. et Bizzarri (Ciprés de la Cordillera). In: Donoso C., Ipinza R., Premoli A., and Gallo L. (Eds.), Variación intraespecífica en las especies arbóreas de los bosques templados de Chile y Argentina. Editorial Universitaria, Santiago de Chile, pp. 233–252. [Google Scholar]
  • Grosfeld J., 2002. Análisis de la variabilidad morfológica y arquitectural de Austrocedus chilensis (D. Don) Pic. Serm. et Bizzarri, Fitzroya cupressoides (Molina) I.M. Johnst., Pilgerodendron uviferum (D. Don) Florin y Cupressus sempervirens L. (Cupressaceae). Tesis doctoral, CRUB-UNComahue, Argentina. [Google Scholar]
  • Grosfeld J. and Barthélémy D., 2004. Primary growth and morphological markers of interannual growth limits in Cupressaceae from Patagonia. Bot. J. Linn. Soc. 146: 285–293. [CrossRef] [Google Scholar]
  • Gyenge J.E., Fernández M.E., Dalla-Salda G., and Schlichter T., 2005. Leaf and whole-plant water relations of the Patagonian conifer Austrocedrus chilensis (D. Don) Pic. Ser. et Bizzarri: implications on its drought resistance capacity. Ann. For. Sci. 62: 297–302. [CrossRef] [EDP Sciences] [Google Scholar]
  • Houle D., 1992. Comparing evolvability and variability of quantitative traits. Genetics 130: 195–204. [PubMed] [Google Scholar]
  • King D.A., 1990. The adaptive significance of tree height. Amer. Nat. 135: 809–828. [CrossRef] [Google Scholar]
  • Lauteri M., Pliura A., Monteverdi M.C., Brugnoli E., Villani F., and Eriksson G., 2004. Genetic variation in carbon isotope discrimination in six European populations of Castanea sativa Mill. originating from contrasting localities. J. Evol. Biol. 17: 1286–1296. [CrossRef] [PubMed] [Google Scholar]
  • Leinonen T., O’Hara R.B., Cano J.M., and Merilä J., 2008. Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. J. Evol. Biol. 21: 1–17. [PubMed] [Google Scholar]
  • López R., Zehavi A., Climent J., and Gil L., 2007. Contrasting ecotypic differentiation for growth and survival in Pinus canariensis. Aust. J. Bot. 55: 759–769. [CrossRef] [Google Scholar]
  • Lynch M. and Walsh B., 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland Massachusetts, 980 p. [Google Scholar]
  • McKay J.K. and Latta R.G., 2002. Adaptive population divergence: markers, QTL and traits. Trends Ecol. Evol. 17: 285–291. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Merilä J. and Crnokrak P., 2001. Comparison of genetic differentiation at marker loci and quantitative traits. J. Evol. Biol. 14: 892–903. [CrossRef] [Google Scholar]
  • Moles A.T. and Westoby M., 2004. Seedling survival and seed size: a synthesis of the literature. J. Ecol. 92: 372–383. [CrossRef] [Google Scholar]
  • Namkoong G., Usanis R.A., and Silen R.R., 1972. Age-related variation in genetic control of height growth in Douglas-fir. Theor. Appl. Genet. 42: 151–159. [CrossRef] [PubMed] [Google Scholar]
  • Namkoong G. and Conkle M.T., 1976. Time trends in genetic control over height growth in ponderosa pine. For. Sci. 22: 2–12. [Google Scholar]
  • Notivol E., García-Gil M.R., Alía R., and Savolainen O., 2007. Genetic variation of growth rhythm traits in the limits of latitudinal cline in Scots pine. Can. J. For. Res. 37: 540–551. [CrossRef] [Google Scholar]
  • O’Neill G., Adams T.W., and Aitken S.N., 2001. Quantitative genetics of spring and fall cold hardiness in seedlings from two Oregon populations of coastal Douglas-fir. For. Ecol. Manage. 149: 305–318. [CrossRef] [Google Scholar]
  • Pastorino M.J. and Gallo L.A., 2002. Quaternary evolutionary history of Austrocedrus chilensis, a cypress native to the Andean-Patagonian Forest. J. Biogeogr. 29: 1167–1178. [CrossRef] [Google Scholar]
  • Pastorino M.J., Gallo L.A., and Hattemer H.H., 2004. Genetic variation in natural populations of Austrocedrus chilensis, a cypress of the Andean-Patagonian Forest. Bioch. Syst. Ecol. 32: 993–1008. [CrossRef] [Google Scholar]
  • Pastorino M.J. and Gallo L.A., 2006. Mating system in a low-density natural population of the dioecious wind-pollinated Patagonian Cypress. Genetica 126: 315–321. [CrossRef] [PubMed] [Google Scholar]
  • Pastorino M.J. and Gallo L.A., 2009. Preliminary operational genetic management units of a highly fragmented forest tree species of southern South America. For. Ecol. Manage. 257: 2350–2358. [CrossRef] [Google Scholar]
  • Puntieri J., Barthélémy D., Martinez P., Raffaele E., and Brion C., 1998. Annual-shoot growth and branching patterns in Nothofagus dombeyi (Fagaceae). Can. J. Bot. 76: 673–685. [CrossRef] [Google Scholar]
  • R Development Core Team, 2008. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.Rproject.org. [Google Scholar]
  • Reich P.B., Wright I.J., Cavender-Bares J., Craine J.M., Oleksyn J., Westoby M., and Walters M.B., 2003. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164: 143–164. [CrossRef] [Google Scholar]
  • Roach D.A. and Wulff R.D., 1987. Maternal effects in plants. Ann. Rev. Ecol. Syst. 18: 209–235. [CrossRef] [Google Scholar]
  • SAS Institute Inc., 1989. SAS/STAT® User’s Guide, Version 6, SAS Institute Inc., Cary, NC. [Google Scholar]
  • Seiwa K. and Kikuzawa K., 1991. Phenology of tree seedlings in relation to seed size. Can. J. Bot. 69: 532–538. [CrossRef] [Google Scholar]
  • Squillace A.E., 1974. Average genetic correlation among offspring from open-pollinated forest trees. Silvae Genet. 23: 149–156. [Google Scholar]
  • Sokal R.R. and Rohlf F.J., 1981. Biometry: the principles and practice of statistics in biological research. Freeman, 2nd ed., San Francisco, 875 p. [Google Scholar]
  • Spitze K., 1993. Population structure in Daphnia obtusa: quantitative genetic and allozyme variation. Genetics 135: 367–374. [PubMed] [Google Scholar]
  • Via S. and Lande R., 1987. Genotype – environment interaction and the evolution of plasticity. Evolution 39: 505–522. [CrossRef] [Google Scholar]
  • Visscher P.M., 1998. On the sampling variance of intraclass correlations and genetic correlations. Genetics 149: 1605–1614. [PubMed] [Google Scholar]
  • Whiteley R.E., Black-Samuelsson S., and Jansson G., 2003. Within and between population variation in adaptive traits in Ulmus laevis, the European white elm. For. Genet. 10: 309–319. [Google Scholar]
  • Wright S., 1978. Evolution and the genetics of populations, Vol. 4, Variability within and among natural populations. University of Chicago Press, Chicago, 590 p. [Google Scholar]