Free Access
Ann. For. Sci.
Volume 67, Number 5, July-August 2010
Article Number 512
Number of page(s) 8
Published online 18 May 2010
  • Aagaard J.E., Krutovskii K.V., and Strauss S.H., 1998. RAPDs and allozymes exhibit similar levels of diversity and differentiation among populations and races of Douglas-fir. Heredity 81: 69–78. [CrossRef] [Google Scholar]
  • Albarouki E. and Peterson A., 2007. Molecular and morphological characterization of Crataegus L. species (Rosaceae) in southern Syria. Bot. J. Linn. Soc. 153: 255–263. [CrossRef] [Google Scholar]
  • Begona R., Sergio G.N., Ester S., Joel A., Peter C., and Juan S., 2005. Genetic diversity and structure of natural and managed populations of Cedrus atlantica (Pinaceae) assessed using random amplified polymorphic DNA. Am. J. Bot. 92: 875–884. [CrossRef] [PubMed] [Google Scholar]
  • Bonnet E. and van de Peer Y., 2002. zt: a software tool for simple and partial Mantel tests. J. Stat. Software 7: 1–12. [Google Scholar]
  • Bussell J.D., 1999. The distribution of random amplified polymorphic DNA (RAPD) diversity amongst populations of Isotoma petraea (Lobeliaceae). Mol. Ecol. 8: 775–789. [CrossRef] [Google Scholar]
  • Christensen K.I., 1992. Revision of Crataegus Sect. Crataegus and Nothosect. Crataeguineae (Rosaceae-Maloideae) in the Old World. Syst. Bot. Monogr. 1–199. [Google Scholar]
  • Dickinson T.A. and Campbell C.S., 1991. Population structure and reproductive biology in the Maloideae (Rosaceae). Syst. Bot. 16: 350–362. [CrossRef] [Google Scholar]
  • Dickinson T.A. and Talent N., 2007. Polyploidy, reproductive biology and Rosaceae understanding evolution and making classification. Plant. Syst. Evol. 266: 59–78. [CrossRef] [Google Scholar]
  • Emberger L., 1966. Une classification biogéographique des climats. Recherches et Travaux des Laboratoires de Géologie, Botanique et Zoologie, Faculté des Sciences Montpellier (France) 7: 1–43. [Google Scholar]
  • Evans R.C. and Campbell C.S., 2002. The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Am. J. Bot. 89: 1478–1484. [CrossRef] [PubMed] [Google Scholar]
  • Excoffier L., Smouse P.E., and Quattro J.M., 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491. [PubMed] [Google Scholar]
  • Ferrazzini D., Monteleone I., and Belletti P., 2008. Small-scale genetic diversity in one seed hawthorn (Crataegus monogyna Jaq.). Eur. J. For. Res. 127: 407–414. [CrossRef] [Google Scholar]
  • Fineschi S., Salvini D., Turchini D., Pastorelli R., and Vendramin G.G., 2005. Crataegus monogyna Jacq. & C. laevigata (Poir.) DC (Rosaceae, Maloidese) display low levels of genetic diversity assessed by chloroplast markers. Plant. Syst. Evol. 250: 187–196. [CrossRef] [Google Scholar]
  • Fournier N., Rigling A., Dobbertin M., and Gugerli F., 2006. Faible différenciation génétique, à partir d’amplification aléatoire d’ADN polymorphe (RAPD), entre les types de pin sylvestre (Pinus sylvestris L.) d’altitude et de plaine dans les Alpes à climat continental. Ann. For. Sci. 63: 431–439. [CrossRef] [EDP Sciences] [Google Scholar]
  • Hogbin P.M. and Peakall R., 1999. Evaluation of the contribution of genetic research to the management of the endangered plant, Zieria prostrata. Conserv. Biol. 13: 514–522. [CrossRef] [Google Scholar]
  • Holsinger K.E. and Wallace L.E., 2004. Bayesian approaches for the analysis of population genetic structure: an example from Platanthera leucophaea (Orchidaceae). Mol. Ecol. 13: 887–894. [CrossRef] [PubMed] [Google Scholar]
  • Kremer A., Caron H., Cavers S., Colpaert N., Gheysen G., Gribel R., Lemes M., Lowe A.J., Margis R., Navarro C., and Salgueiro F., 2005. Monitoring genetic diversity in tropical trees with multilocus dominant markers. Heredity 95: 274–280. [CrossRef] [PubMed] [Google Scholar]
  • Kovach W.L., 1999. A Multivariate Statistical Package for Windows, ver 3.1., Kovach Computing Services, Pentraeth, UK. [Google Scholar]
  • Kumar S., Tamura K., Jakobsen I.B., and Nei M., 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17: 1244–1245. [CrossRef] [PubMed] [Google Scholar]
  • Lo E.Y.Y., Stefanovic S., and Dickinson T.A., 2007. Molecular reappraisal of relationships between Crataegus and Mespilus (Rosaceae, Pyreae) – Two genera or one? Syst. Bot. 32: 596–616. [Google Scholar]
  • Lo E.Y.Y., Stefanovic S., Christensen K.I., and Dickinson T.A., 2009. Evidence for genetic association between East Asian and western North American Crataegus L. (Rosaceae) and rapid divergence of the eastern North American lineages based on multiple DNA sequences. Mol. Phylogen. Evol. 51: 157–168. [CrossRef] [Google Scholar]
  • Lodhi M.A., Ye G.N., and Weeden N.F., 1994. A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant. Mol. Biol. Rep. 12: 6–13. [CrossRef] [Google Scholar]
  • Lynch M. and Milligan B.G., 1994. Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3: 9–99. [Google Scholar]
  • Mantel N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209–220. [PubMed] [Google Scholar]
  • Nei M. and Li W.H., 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 76: 5269–5273. [Google Scholar]
  • Nybom H. and Bartish I.V., 2000. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in plant ecology. Evol. Syst. 3: 93–114. [CrossRef] [Google Scholar]
  • Nybom H., 2004. Comparaison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 13: 1143–1155. [CrossRef] [PubMed] [Google Scholar]
  • Petit R., Aguinagalde I., de Beaulieu J.-L., Bittkau C., Brewer S., Cheddadi R., Ennos R., Fineschi S., Grivet D., Lascoux M., Mohanty A., Muller-Starck G., Demesure-Musch B., Palme Â., Martîn J.P., Rendell S., and Vendramin G.G., 2003. Glacial refugia: Hotspots but not melting pots of genetic diversity. Science 300: 1563–1565. [CrossRef] [PubMed] [Google Scholar]
  • Phipps J.B., 2005. A review of hybridization in North American hawthorns – Another look at “the Crataegus problem”. Ann. Missouri Bot. Gard. 92: 113–126. [Google Scholar]
  • Pottier-Alapetite G., 1979. Flore de la Tunisie: angiospermes dicotylédones, Dialypétales. Publications Scientifiques Tunisiennes, Tunis, 654 p. [Google Scholar]
  • SAS (Statistical Analysis System), 1990. SAS user’s guide: SAS STAT, SAS BASIC. Version 6 fourth edition. SAS incl, Box 8000. Cary, NC 27512-8000, Cary: NC: SAS institut Inc. [Google Scholar]
  • Talent N. and Dickinson T.A., 2005. Polyploidy in Crataegus and Mespilus (Rosaceae, Maloideae): evolutionary inferences from flow cytometry of nuclear DNA amounts. Can. J. Bot. 83: 1268–1304. [CrossRef] [Google Scholar]
  • Williams J.G.K., Hanafey M.K., Rafalski J.A., and Tinjey S.V., 1993. Genetic analysis using random amplified polymorphic DNA markers. Methods Enzymol. 218:704–740. [Google Scholar]
  • Williams J.G.K., Kubelik A.R., Rafalski K.J., and Tingey S.V., 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18: 6531–6535. [Google Scholar]
  • Wright S., 1951. The genetical structure of populations. Ann. Eugenics 15: 323–354. [MathSciNet] [Google Scholar]
  • Yeh F., Yang R., and Boyle T., 1999. Popgene, version 1.31. Microsoft window-based freeware for population genetic analysis. University of Alberta, Edmonton. [Google Scholar]