Free Access
Issue
Ann. For. Sci.
Volume 67, Number 6, September 2010
Article Number 603
Number of page(s) 7
DOI https://doi.org/10.1051/forest/2010016
Published online 08 July 2010
  • Allona I., Collada C., Casado R. and Aragoncillo C., 1994. Electrophoretic analysis of seed storage proteins from gymnosperms. Electrophoresis 15: 1062–1067. [CrossRef] [PubMed] [Google Scholar]
  • Alvarez J.B., Toledo M.J., Abellanas B. and Martín L.M., 2004. Use of megagametophyte storage proteins as markers of the genetic diversity in stone pine (Pinus pinea L) in Andalusia, Spain. Genet. Resour. Crop Evol. 51: 621–627. [CrossRef] [Google Scholar]
  • Arista M., 1995. The structure and dynamics of an Abies pinsapo forest in southern Spain. For. Ecol. Manage. 74: 81–89. [CrossRef] [Google Scholar]
  • Arista M. and Talavera S., 1996. Density effect on the fruit-set, seed crop viability and seedling vigour of Abies pinsapo. Ann. Bot. 77: 187–189. [CrossRef] [Google Scholar]
  • Arista M. and Talavera S., 1997. Gender expression in Abies pinsapo Boiss., a Mediterranean fir. Ann. Bot. 79: 337–342. [CrossRef] [Google Scholar]
  • Diebel K.E. and Feret P.P., 1991. Isozyme variation within the Fraser fir (Abies fraseri (Pursh) Poir.) population on Mount Rogers, Virginia: Lack of microgeographic differentiation. Silvae Genet. 40: 79–85. [Google Scholar]
  • El-Kassaby Y.A., Meagher M.D., Parkinson J. and Portlock F.T., 1987. Allozyme inheritance, heterozygosity and outcrossing rate among Pinus monticola near Ladysmith, British Columbia. Heredity 58: 173–181. [CrossRef] [Google Scholar]
  • Fady B. and Conckle M.T., 1993. Allozyme and possible phylogenetic implications in Abies cephalonica Loudon and some related eastern Mediterranean firs. Silvae Genet. 42: 351–359. [Google Scholar]
  • Fonseca P.A., Ferreira R.B. and Texeira A.R., 1997. Seed proteins from Quercus suber. J. Agric. Food Chem. 45: 3443–3447. [CrossRef] [Google Scholar]
  • Gepts P., 1990. Genetic diversity of seed storage proteins in plants. In: Brown A.H.D., Clegg M.T., Kahler A.L., and Weir B.S. (Eds.), Plant population genetics, breeding and genetic resources. Sinauer Associates Inc Publishers, Suderland, Massachusetts, pp. 64–82. [Google Scholar]
  • Hamrick J.L., 1989. Isozymnes and the analysis of genetic structure in plant populations. In: Soltis D.E., and Soltis P.S. (Eds.), Isozymes in plant biology, Portland, Oregon, pp. 87–105. [Google Scholar]
  • Hamrick J.L. and Godt M.J.W., 1990. Allozyme diversity in plant species. In: Brown H.D., Clegg M.T., Khaler A.L., and Weir B.S. (Eds.), Plant Population Genetics, Breeding, and Genetic Resources. Sinauer Press, Sunderland, MA, pp. 43–63. [Google Scholar]
  • Hamrick J.L., Godt M.J.W. and Sherman-Broyles S.L., 1992. Factors influencing levels of genetic diversity in woody plant species. New For. 6: 95–124. [CrossRef] [Google Scholar]
  • Huang Q.Q., Tomaru N., Wang L.H. and Ohba K., 1994. Genetic-control of isozyme variation in masson pine, Pinus massoniana Lamb. Silvae Genet. 43: 285–292. [Google Scholar]
  • Kurz M.L., Roberts D.R., Flinn B.S. and Vidaver W.E., 1994. A morphological and biochemical analysis of embryo maturation during yellow cypress seed development. Can. J. For. Res. 24: 431–441. [CrossRef] [Google Scholar]
  • Laemmli U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685. [CrossRef] [PubMed] [Google Scholar]
  • Millar C.I., 1983. A steep cline in Pinus muricata. Evolution 37: 311–319. [CrossRef] [PubMed] [Google Scholar]
  • Morris R.W. and Spieth P.T., 1978. Sampling strategies for using female gametophytes to estimate heterozygosity in conifers. Theor. Appl. Genet. 51: 217–222. [CrossRef] [PubMed] [Google Scholar]
  • Neale D. and Adams W.T., 1981. Inheritance of isozyme variants in seed tissues of balsam fir (Abies balsamea). Can. J. Bot. 59: 1285–1291. [CrossRef] [Google Scholar]
  • Nei M., 1972. Genetic distances between different populations. Am. Nat. 106: 283–292. [CrossRef] [Google Scholar]
  • Nei M., 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 70: 3321–3323. [CrossRef] [Google Scholar]
  • Nei M., 1975. Molecular population genetics and evolution. Amsterdam, North-Holland. [Google Scholar]
  • Pascual L., Garcia F.J. and Perfectti F., 1993. Inheritance of isozyme variation in seed tissues of Abies pinsapo Boiss. Silvae Genet. 42: 335–340. [Google Scholar]
  • Piovesan G., Pelosi C., Schirone A. and Schirone B., 1993. Taxonomic evaluations of the genus Pinus (Pinaceae) based on electrophoretic data of salt soluble and insoluble seed storage proteins. Plant. Syst. Evol. 186: 57–68. [CrossRef] [Google Scholar]
  • Rogers D.L., 1997. Inheritance of allozymes from seed tissues of the hexaploid gymnosperm, Sequoia sempervirens (D. Don) Endl (Coast redwood). Heredity 78: 166–175. [CrossRef] [Google Scholar]
  • Rohlf F.J. and Fisher D.L., 1986. Test for hierarchical structure in random data sets. Syst. Zool. 17: 407–412. [CrossRef] [Google Scholar]
  • Scaltsoyiannes A., Tsaktsira M. and Drouzas A.D., 1999. Allozyme differentiation in the Mediterranean firs (Abies, Pinaceae). A first comparative study with phylogenetic implications. Plant Syst. Evol. 216: 289–307. [Google Scholar]
  • Shaw D.V. and Allard R.W., 1981. Analysis of mating system parameters and population structure in Douglas Fir using single-locus and multi-locus methods. In: Conkle M.T., and Berkeley C.A. (Eds.), Proc. Symp. Isozymes North Am. Forest Trees and Forest Insects, USDA Forest Serv. Gen. Techn. Rep. PSW-48, pp. 18–22. [Google Scholar]
  • Sneath P.H.A. and Sokal R.R., 1973. Numerical Taxonomy. San Francisco, Freedman. [Google Scholar]
  • Terrab A., Talavera S., Arista M., Paun O., Stuessy T.F. and Tremetsberger K., 2007. Genetic diversity at chloroplast microsatellites (cpSSR) and geographic structure in endangered West mediterranean firs (Abies spp., Pinaceae). Taxon 56: 409–416. [Google Scholar]
  • Wang C.T. and Liu T.P., 1998. Inheritance and linkage relationships of allozymes, and estimation of outcrossing rates in a seed orchard of Cunninghamia konishii Hay. Silvae Genet. 47: 33–37. [Google Scholar]
  • Wang Z.M. and Nagasaka K., 1997. Allozyme variation in natural populations of Picea glehnii in Hokkaido, Japan. Heredity 78: 470–475. [CrossRef] [Google Scholar]
  • Wheeler N.C. and Guries R.P., 1982. Population structure, genetic diversity, and morphological variation in Pinus contorta Dougl. Can. J. For. Res. 12: 595–606. [CrossRef] [Google Scholar]
  • Woo L.S., Hoon Y.B., Don H.S., Ho S.J. and Joo L.J., 2008. Ann. For. Sci. 65: 302–308. [Google Scholar]
  • Yeh F.C., Yang R.C., Boyle T.B.J., Ye Z.H., and Mao J.X., 1997. Popgene ver 1.32. The user-friendly software for population genetic analysis. Molecular Biology and Biotechnology Center, University of Alberta, Canada. [Google Scholar]
  • Ziegenhagen B., Fady B., Kuhlenkamp V. and Liepelt S., 2005. Differentiating groups of Abies species with a simple molecular marker. Silvae Genet 54: 123–126. [Google Scholar]