Free Access
Issue
Ann. For. Sci.
Volume 67, Number 6, September 2010
Article Number 611
Number of page(s) 12
DOI https://doi.org/10.1051/forest/2010024
Published online 08 July 2010
  • Albinsson B., Li S., Lundquist K. and Stomberg R., 1999. The origin of lignin fluorescence. J. Mol. Struct. 508: 19–27. [CrossRef] [Google Scholar]
  • ASTM (American Society for Testing and Materials), 1996. Standard methods of evaluating the properties of wood based fiber and particle panel materials. ASTM D 1106-96. Philadelphia, USA. [Google Scholar]
  • Barsberg S. and Nielsen K.A., 2003. Oxidative quenching of spruce thermo-mechanical pulp fiber autofluorescence monitored in real time by confocal laser scanning microscopy-implications for lignin autofluorescence. Biomacromolecules 4: 64–69. [CrossRef] [PubMed] [Google Scholar]
  • Baucher M., Monties B., Van Montagu M. and Boerjan W., 1998. Biosynthesis and genetic engineering of lignin. Crit. Rev. Plant Sci. 17: 125–197. [CrossRef] [Google Scholar]
  • Boerjan W., Ralph J. and Baucher M., 2003. Lignin biosynthesis. Ann. Rev. Plant Biol. 54: 519–546. [CrossRef] [PubMed] [Google Scholar]
  • Das M., Bhattacharya S. and Pal A., 2005. Generation and characterization of SCARs by cloning and sequencing of RAPD products: A strategy for species-specific marker development in bamboo. Ann. Bot. 95: 835–841. [CrossRef] [PubMed] [Google Scholar]
  • Donaldson L.A, Hague J. and Snell R., 2001. Lignin distribution in coppice poplar, linseed and wheat straw. Horzforschung 55: 379–385. [CrossRef] [Google Scholar]
  • Espiloy Z.B., 1987. Effect of age on the physico-mechanical properties of some Philippine bamboo. In: Rao A.N., Dhanarajan G. and Sastry C.B. (Eds.), Recent Research on Bamboo. Proc. Intern. Workshop Hangzhou, China, Singapore, pp. 244–246. [Google Scholar]
  • FAO. 1997. Provisional outlook for global forest products consumption, production and trade. Forestry Department, Policy and Planning Division, FAO, Rome. [Google Scholar]
  • Fergus B.J. and Goring D.A.I., 1970. The location of guaiacyl and syringyl lignins in birch xylem tissue. Holzforschung 24: 113–117. [CrossRef] [Google Scholar]
  • Fergus B.J. and Goring D.A.I., 1970. The distribution of lignin in birch as determined by ultraviolet microscopy. Holzforschung 24: 118–124. [CrossRef] [Google Scholar]
  • Ganapathy P.M. 1997. Sources of non wood fiber for paper, board and panels production: status, trends and prospects for India. In: Asia-pacific forestry sector outlook study working paper series, Working Paper No. APFSOS/WP/10. Forestry Policy and Planning Division, Rome Regional Office for Asia and the Pacific, Bangkok, pp. 1–59. [Google Scholar]
  • Harris P.J. and Hartley R.D., 1976. Detection of bound ferulic acid in cell walls of the Gramineae by ultraviolet fluorescence microscopy. Nature 259: 508–510. [CrossRef] [Google Scholar]
  • Hommel M., Khalil-Ahmad Q., Jaimes-Miranda F., Mila I., Pouzet C., Latche A., Pech J.C., Bouzayen M. and Regad F., 2008. Over-expression of a chimeric gene of the transcriptional co-activator MBF1 fused to the EAR repressor motif causes developmental alteration in Arabidopsis and tomato. Plant Sci. 175: 168–177. [CrossRef] [Google Scholar]
  • Lee J.J., Woodward A.W. and Chen Z.J., 2007. Gene expression changes and early events in cotton fiber development. Ann. Bot. 100: 1391–1401. [CrossRef] [PubMed] [Google Scholar]
  • Li K. and Reeve D.W., 2005. Fluorescent Labeling of Lignin in the Wood Pulp Fiber Wall. J. Wood Chem. Technol. 24: 169–181. [CrossRef] [Google Scholar]
  • Lichtenthaler H.K. and Schweiger J., 1998. Cell wall bound ferulic acid, the major substance of the blue-green fluorescence emission of plants. J. Plant Physiol. 152: 272–282. [Google Scholar]
  • Liese W., 1987. Anatomy and properties of bamboo. In Recent Research on Bamboos. In: Rao A.N., Dhanarajan G. and Sastry C.B. (Eds.). Chinese Academy of Forestry, Peking, China and International Development Research Centre, Canada, pp. 196–208. [Google Scholar]
  • Liese W., 1992. The structure of bamboo in relation to its properties and utilization. In: Bamboo and its use, Proceedings International Symposium on Industrial use of bamboo, Beijing, China, 7th to 11th December, 1992. Intern. Trop. Timber Organization, Chinese Academy of Forestry, China. [Google Scholar]
  • Ogbonnaya C.I., Roy-Macauley H., Nwalozie M.C. and Annerose D.J.M., 1997. Physical and histochemical properties of kenaf (Hibiscus cannabinus L.) grown under water deficit on a sandy soil. Indus. Crops Prod. 7: 79–81. [Google Scholar]
  • Parameswaran N. and Liese W., 1976. On the fine structure of bamboo fibers. Wood Sci. Tech. 10: 231–246. [Google Scholar]
  • Ray A.K., Das S.K. and Mondal S., 2004. Microstructural characterization of bamboo. J. Mat. Sci. 39: 1055–1066. [CrossRef] [Google Scholar]
  • Rost F.W.D., 1992. Fluorescence microscopy, Cambridge University Press, Cambridge, 253 p. [Google Scholar]
  • Rydholm R.A., 1965. Pulping processes, Interscience Publishers, New York, 93 J.V. [Google Scholar]
  • Saikia S.N., Goswami T. and Ali F., 1997. Evaluation of pulp and paper making characteristics of certain fast growing plants. Wood Sci. Tech. 31: 467–475. [Google Scholar]
  • Saka S. and Goring D.A.I., 1985. Localization of lignins in wood cell walls. In: Higuchi T. (Ed.), Biosynthesis and biodegradation of wood components, Academic, Orlando, pp. 51–62. [Google Scholar]
  • Schmitz R., Reuber S., Veit M. and Weissenbock G., 1996. Comparison of soluble and insoluble hydroxycinnamic acids (HCAs) with soluble flavonoids with regard to UV protection of rye primary leaves. Plant Physiol. Biochem. Special Issue, 10th FESPP Congress, Florence, pp. 309–310. [Google Scholar]
  • Updegraff D.M., 1969. Semimicro determination of cellulose in biological materials. Ann. Biochem. 32: 420–424. [CrossRef] [Google Scholar]
  • Uzala, E. N., Go’ mez Rosb L.V., Pomara F., Bernala. M.A., Paradelac, A., Albarc, J. P. and Ros Barcelo A., 2009. The presence of sinapyl lignin in Ginkgo biloba cell cultures changes our views of the evolution of lignin biosynthesis. Physiol. Plant. 135: 196–213. [CrossRef] [PubMed] [Google Scholar]
  • Verbelen J.-P. and Kerstens S., 2000. Polarization confocal microscopy and Congo Red fluorescence: a simple and rapid method to determine the mean cellulose fibril orientation in plants. J. Microscopy 198: 101–107. [CrossRef] [Google Scholar]
  • Ververis C., Georghiou K., Christodoulakis N., Santas P. and Santas R., 2004. Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Indus. Crops Prod. 19: 245–254. [CrossRef] [Google Scholar]
  • Widjaja E.A. and Risyad Z., 1987. Anatomical properties of some bamboo utilized in Indonesia. In: Rao A.N., Dhanarajan G. and Sastry C.B. (Eds.), Recent Research on Bamboo. Proc. Intern. Workshop Hangzhou, China, Singapore, pp. 244–246. [Google Scholar]
  • Wood P.J., 1980. Specificity in the interaction of direct dyes with polysaccharides. Carbohydr. Res. 85: 271–287. [CrossRef] [Google Scholar]
  • Xu F., Zhonga X.C., Sunb R.C. and Luc Q., 2006. Anatomy, ultrastructure and lignin distribution in cell wall of Caragana korshinskii. Indus. Crops Prod. 24: 186–193. [CrossRef] [Google Scholar]