Free Access
Issue
Ann. For. Sci.
Volume 67, Number 6, September 2010
Article Number 605
Number of page(s) 9
DOI https://doi.org/10.1051/forest/2010018
Published online 08 July 2010
  • Broadhurst L.M., Lowe A.J., Coates D.J., Cunningham S.A., McDonald M.W., Vesk P.A. and Yates C.J., 2008. Seed supply for broadscale restoration: maximizing evolutionary potential. Evol. Appl. 1: 587–597. [PubMed] [Google Scholar]
  • Byrne M., 2008. Phylogeny, diversity and evolution of eucalypts. In: Sharma A.K. and Sharma A. (Eds.), Plant Genome: Biodiversity and Evolution, Part E: Phanerogams-Angiosperm, Science Publishers Enfield, Volume 1, pp. 303–346. [Google Scholar]
  • Chambers P.G.S., Borralho N.M.G. and Potts B.M., 1996. Genetic analysis of survival in Eucalyptus globulus ssp. globulus. Silvae Genet. 45: 107–112. [Google Scholar]
  • Charlesworth D., 2006. Evolution of plant breeding systems. Curr. Biol. 16: 726–735. [CrossRef] [Google Scholar]
  • Charlesworth D. and Charlesworth B., 1987. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Syst. 18: 237–268. [Google Scholar]
  • Cockerham C.C. and Weir B.S., 1984. Covariances of relatives stemming from a population undergoing mixed self and random mating. Biometrics 40: 157–164. [CrossRef] [PubMed] [Google Scholar]
  • Costa e Silva J., Dutkowski G.W. and Borralho N.M.G., 2005. Across-site heterogeneity of genetic and environmental variances in the genetic evaluation of Eucalyptus globulus trials for height growth. Ann. For. Sci. 62: 183–191. [CrossRef] [EDP Sciences] [Google Scholar]
  • Costa e Silva J., Hardner C.M., and Potts B.M., 2010. Genetic variation and parental performance under inbreeding for growth in Eucalyptus globulus. Ann. For. Sci. 67: 606. [CrossRef] [EDP Sciences] [Google Scholar]
  • Ellstrand N.C. and Elam D.R., 1993. Population genetic consequences of small population size: implications for plant conservation. Annual Review of Ecology and Systematics 24: 217–42. [CrossRef] [Google Scholar]
  • Gilmour A.R., Gogel B.J., Cullis B.R., and Thompson R., 2006. ASReml User Guide Release 2.0. VSN International Ltd, Hemel Hempstead, UK. [Google Scholar]
  • Goodwillie C., Kalisz S. and Eckert C.G., 2005. The evolutionary enigma of mixed mating systems in plants: Occurrence, theoretical explanations, and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 36: 47–79. [Google Scholar]
  • Griffin A.R. and Cotterill P.P., 1988. Genetic variation in growth of outcrossed, selfed and open-pollinated progenies of Eucalyptus regnans and some implications for breeding strategy. Silvae Genet. 37: 124–131. [Google Scholar]
  • Hardner C.M. and Potts B.M., 1995. Inbreeding depression and changes in variation after selfing Eucalyptus globulus subsp. globulus. Silvae Genet. 44: 46–54. [Google Scholar]
  • Hardner C.M. and Potts B.M., 1997. Postdispersal selection following mixed mating in Eucalyptus regnans. Evolution 51: 103–111. [CrossRef] [PubMed] [Google Scholar]
  • Hardner C.M. and Tibbits W.N., 1998. Inbreeding depression for growth, wood and fecundity traits in Eucalyptus nitens. For. Genet. 5: 11–20. [Google Scholar]
  • Hardner C.M., Potts B.M. and Gore P.L., 1998. The relationship between cross success and spatial proximity of Eucalyptus globulus ssp. globulus parents. Evolution 52: 614–618. [CrossRef] [PubMed] [Google Scholar]
  • Hodge G.R., Volker P.W., Potts B.M. and Owen J.V., 1996. A comparison of genetic information from open-pollinated and control-pollinated progeny tests in two eucalypt species. Theor. Appl. Genet. 92: 53–63. [CrossRef] [PubMed] [Google Scholar]
  • Husband B.C. and Schemske D.W., 1996. Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50: 54–70. [CrossRef] [PubMed] [Google Scholar]
  • Jones T.H., 2005. Population Genetics of Native and Domesticated Eucalyptus globulus. Unpublished Ph.D. thesis, School of Plant Science, University of Tasmania, Hobart. [Google Scholar]
  • Kelly J.K., 1999. An experimental method for evaluating the contribution of deleterious mutations to quantitative trait variation. Genet. Res. 73: 263–273. [CrossRef] [PubMed] [Google Scholar]
  • Kelly J.K., 2005. Family level inbreeding depression and the evolution of plant systems. New Phytol. 165: 55–62. [CrossRef] [PubMed] [Google Scholar]
  • Kenward M.G. and Roger J.H., 1997. The precision of fixed effects estimates from restricted maximum likelihood. Biometrics 53: 983–997. [CrossRef] [PubMed] [Google Scholar]
  • Klekowski E.J., 1988. Genetic load and its causes in long-lived plants. Trees 2: 195–203. [Google Scholar]
  • Lande R. and Schemske D.W., 1985. The evolution of self-fertilisation and inbreeding depression in plants. I. Genetic models. Evolution 39: 24–40. [Google Scholar]
  • Lerner I.M., 1954. Genetic Homeostasis. Oliver and Boyd, Edinburgh, Scotland. [Google Scholar]
  • Lopez G.A., Potts B.M. and Tilyard P.A., 2000. F1 hybrid inviability in Eucalyptus: the case of E. ovata x E. globulus. Heredity 85: 242–250. [CrossRef] [PubMed] [Google Scholar]
  • Lynch M. and Walsh B., 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland, MA, USA. [Google Scholar]
  • McGowen M., Potts B.M., Vaillancourt R., Gore P., Williams D., and Pilbeam D., 2004a. The genetic control of sexual reproduction in Eucalyptus globulus. In: Borralho N.M.G., Pereira J.S., Marques C., Coutinho J., Madeira M., and Tomé M. (Eds), Eucalyptus in a Changing World, Proceedings IUFRO Conference, Aveiro, Portugal. RAIZ, Instituto Investigação de Floresta e Papel, Portugal, pp. 104–108. [Google Scholar]
  • McGowen M.H., Williams D.R., Potts B.M. and Vaillancourt R.E., 2004. Stability of outcrossing rates in Eucalyptus globulus seedlots. Silvae Genet. 53: 42–44. [Google Scholar]
  • Mimura M., Barbour R.C., Potts B.M., Vaillancourt R.E. and Watanabe K.N., 2009. Comparison of contemporary mating patterns in continuous and fragmented Eucalyptus globulus native forests. Mol. Ecol. 18: 4180–4192. [CrossRef] [PubMed] [Google Scholar]
  • Moorad J.A. and Wade M.J., 2005. A genetic interpretation of the variation in inbreeding depression. Genetics 170: 1373–1384. [CrossRef] [PubMed] [Google Scholar]
  • Patterson B., Vaillancourt R.E. and Potts B.M., 2001. Eucalypt seed collectors: beware of sampling seed lots from low in the canopy! Aust. For. 64: 139–142. [Google Scholar]
  • Patterson B., Vaillancourt R.E., Pilbeam D.J. and Potts B.M., 2004. Factors affecting outcrossing rates in Eucalyptus globulus. Aust. J. Bot. 52: 773-780. [CrossRef] [Google Scholar]
  • Patterson H.D. and Thompson R., 1971. Recovery of inter-block information when block sizes are unequal. Biometrika 58: 545–554. [CrossRef] [MathSciNet] [Google Scholar]
  • Petit R.J., Bialozyt R., Garnier-Gere P. and Hampe A., 2004. Ecology and genetics of tree invasions: from recent introductions to Quaternary migrations. For. Ecol. Manage. 197: 117–137. [CrossRef] [Google Scholar]
  • Potts B.M. and Wiltshire R.J.E., 1997. Eucalypt genetics and genecology. In: Williams J.E. and Woinarski J.C.Z. (Eds), Eucalypt Ecology: Individuals to Ecosystems, Cambridge University Press, Cambridge, pp. 56–91. [Google Scholar]
  • Potts B.M., Vaillancourt R.E., Jordan G., Dutkowski G.W., Costa e Silva J., McKinnon G., Steane D., Volker P., Lopez G., Apiolaza L., Li Y., Marques C., and Borralho N.M.G., 2004. Exploration of the Eucalyptus globulus gene pool. In: Borralho N.M.G., Pereira J.S., Marques C., Coutinho J., Madeira M., and Tomé M. (Eds), Eucalyptus in a Changing World, Proceedings IUFRO Conference, Aveiro, Portugal. RAIZ, Instituto Investigação de Floresta e Papel, Portugal, pp. 46–61. [Google Scholar]
  • Potts B.M., McGowen M.H., Williams D.R., Suitor S., Jones T.H., Gore P.L. and Vaillancourt R.E., 2008. Advances in reproductive biology and seed production systems of Eucalyptus: The case of Eucalyptus globulus. Southern Forests 70: 145–154. [CrossRef] [Google Scholar]
  • Robertson A., 1952. The effect of inbreeding on the variation due to recessive genes. Genetics 37: 189–207. [PubMed] [Google Scholar]
  • SAS Institute Inc., 2004. SAS/STAT 9.1 User’s Guide, SAS Institute, Cary, North Carolina, USA, Volumes 1–7. [Google Scholar]
  • Sedgley M. and Griffin A.R., 1989. Sexual Reproduction of Tree Crops. Academic Press, Sydney. [Google Scholar]
  • Shapiro S.S. and Wilk M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika 52: 591–611. [CrossRef] [MathSciNet] [Google Scholar]
  • Stram D.O. and Lee J.W., 1994. Variance components testing in the longitudinal mixed effects model. Biometrics 50: 1171–1177. [CrossRef] [PubMed] [Google Scholar]
  • Vogler D.W. and Kalisz S., 2001. Sex among the flowers: the distribution of plant mating systems. Evolution 55: 202–204. [PubMed] [Google Scholar]
  • Volker P.W., 2002. Quantitative Genetics of Eucalyptus globulus, E. nitens and their F1 Hybrid. Unpublished Ph.D. thesis, School of Plant Science, University of Tasmania, Hobart. [Google Scholar]
  • Williams C.G. and Savolainen O., 1996. Inbreeding depression in conifers: implications for breeding strategy. For. Sci. 42: 102–117. [Google Scholar]
  • Wu H.X., Matheson A.C. and Spencer D., 1998. Inbreeding in Pinus radiata. I. The effect of inbreeding on growth, survival and variance. Theor. Appl. Genet. 97: 1256–1268. [CrossRef] [Google Scholar]