Open Access
Ann. For. Sci.
Volume 67, Number 8, December 2010
Article Number 812
Number of page(s) 11
Section Original articles
Published online 28 October 2010
  • Alia R., Gil L., and Pardos J.A., 1995. Performance of 43 Pinus pinaster Ait. provenances on 5 Locations in Central Spain. Silvae Genet. 44: 75–81. [Google Scholar]
  • Aranda I., Alia R., Ortega U., Dantas A.K., and Majada J., 2010. Intra-specific variability in biomass partitioning and carbon isotopic discrimination under moderate drought stress in seedlings from four Pinus pinaster populations. Tree Genet. Genomes 6: 169–178. [CrossRef] [Google Scholar]
  • Brendel, O., Pot D., Plomion C., Rozenberg P., and Guehl J.M., 2002. Genetic parameters and QTL analysis of delta C-13 and ring width in maritime pine. Plant Cell Environ. 25: 945–953. [Google Scholar]
  • Chambel M.R., Climent J., and Alia R., 2007. Divergence among species and populations of Mediterranean pines in biomass allocation of seedlings grown under two watering regimes. Ann. For. Sci. 64: 87–97. [CrossRef] [EDP Sciences] [Google Scholar]
  • Correia I., Almeida M.H., Aguiar A., Alia R., Soares-David T., and Santos-Pereira J., 2008. Variations in growth, survival and carbon isotope composition (δ13C) among Pinus pinaster populations of different geographic origins. Tree Physiol. 28: 1545–1552. [PubMed] [Google Scholar]
  • Craig H., 1957. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim. Acta 12: 133–149. [CrossRef] [Google Scholar]
  • Cregg B.M., Olivas-Garcia J.M., and Hennessey T.C., 2000. Provenance variation in carbon isotope discrimination of mature ponderosa pine trees at two locations in the Great Plains. Can. J. For. Res. 30: 428–439. [CrossRef] [Google Scholar]
  • Danjon F., 1994. Stand features and height growth in a 36-year-old maritime pine (Pinus pinaster Ait.) provenance test. Silvae Genet. 43: 52–62. [Google Scholar]
  • Ehleringer J., Bowling D., Flanagan L., Fessenden J., Helliker B., Martinelli L., and Ometto J., 2002. Stable isotopes and carbon cycle processes in forests and grasslands. Plant Biol. 4: 181–189. [CrossRef] [Google Scholar]
  • Fan S., Grossnickle S.C., and Russell J.H., 2008. Morphological and physiological variation in western redcedar (Thuja plicata) populations under contrasting soil water. Trees 22: 671-683 [CrossRef] [Google Scholar]
  • Farquhar G.D., Ehleringer J.R., Hubick K.T., 1989. Carbon isotope discrimination and photosynthesis, Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 40: 503–537. [Google Scholar]
  • Fernandez M., Gil L., and Pardos, J.A., 1999. Response of Pinus pinaster Ait. provenances at early age to water supply. I. Water relation parameters. Ann. Sci. For. 56: 179–187. [CrossRef] [EDP Sciences] [Google Scholar]
  • Fernandez M., Gil L., and Pardos J.A., 2000. Effects of water supply on gas exchange in Pinus pinaster Ait. provenances during their first growing season. Ann. For. Sci. 57: 9–16. [CrossRef] [EDP Sciences] [Google Scholar]
  • Fernandez M, Novillo C., and Pardos J.A., 2006. Effects of water and nutrient availability in Pinus pinaster Ait. open pollinated families at an early age: growth, gas exchange and water relations. New For. 31: 321–342. [CrossRef] [Google Scholar]
  • Fischer R.A. and Turner N.C., 1978. Plant productivity in the arid and semi-arid zone. Ann. Rev. Plant. Physiol. 29: 277–317. [CrossRef] [Google Scholar]
  • Flanagan L.B. and Johnsen K.H., 1995. Genetic-variation in carbon isotope discrimination and its relationship to growth under field conditions in full-sib families of Picea mariana. Can. J. For. Res. 25: 39–47. [CrossRef] [Google Scholar]
  • Guehl J.M., Fort C., and Ferhi A., 1995. Differential response of leaf conductance, carbon-isotope discrimination and water-use efficiency to nitrogen deficiency in maritime pine and pedunculate oak plants. New Phytol. 131: 149–157. [CrossRef] [Google Scholar]
  • Guy R.D. and Holowachuk, D.L., 2001. Population differences in stable carbon isotope ratio of Pinus contorta Dougl. Ex Loud.: relationship to environment, climate of origin, and growth potential. Can. J. Bot. 79: 274–283. [CrossRef] [Google Scholar]
  • Gonzalez-Martinez S.C., Huber D., Ersoz E., Davis J.M., and Neale D.B., 2008. Association genetics in Pinus taeda L. II. Carbon isotope discrimination. Heredity 101: 19–26. [Google Scholar]
  • Guyon J.P. and Kremer A., 1982. Stabilité phénotypique de la croissance en hauteur et cinétique journalière de la presson de sève et de la transpiration chez le pin maritime (Pinus pinaster Ait.), Can. J. For. Res. 12: 936–946. [CrossRef] [Google Scholar]
  • Harfouche A., 2003. Retrospective early test for adult vigor of Pinus pinaster families grown under two water regimes. Implications for early selection. Ann. For. Sci. 60: 539–547. [Google Scholar]
  • Houle D., 1992. Comparing evolvability and variability of quantitative traits. Genetics 130: 195–204. [PubMed] [Google Scholar]
  • Johnsen K.H., Flanagan L.B., Huber D.A., and Major. J.E., 1999. Genetic variation in growth, carbon isotope discrimination, and foliar N concentration in Picea mariana: analyses from a half-diallel mating design using field-grown trees. Can. J. For. Res. 29: 1727–1735. [CrossRef] [Google Scholar]
  • Lauteri, M., Scartazza, A., Guido, C., and Brugnoli, E., 1997. Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castanea sativa adapted to different environments. Funct. Ecol. 11: 675–683. [CrossRef] [Google Scholar]
  • Loustau D., Granier A., and El Hadj Moussa F., 1990. Évolution saisonnière du flux de sève dans un peuplement de pins maritimes. Ann. Sci. For. 21: 599–618. [CrossRef] [EDP Sciences] [Google Scholar]
  • Mckay J.K., Richards J.H., and Mitchell-Olds T., 2003. Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits. Mol. Ecol. 12: 1137–1151. [Google Scholar]
  • Martinez-Villalta J., Sala A., and Pinol J., 2004. The hydraulic architecture of Pinaceae – a review. Plant Ecol. 171: 3–13. [CrossRef] [Google Scholar]
  • Nguyen-Queyrens A., Ferhi A., Loustau D., and Guehl J.M., 1998. Within-ring delta C-13 spatial variability and interannual variations in wood cellulose of two contrasting provenances of Pinus pinaster. Can. J. For. Res. 28: 766–773. [CrossRef] [Google Scholar]
  • Nguyen-Queyrens A., Costa P., Loustau D., and Plomion C., 2002. Osmotic adjustment in Pinus pinaster cuttings in response to a soil drying cycle. Ann. For. Sci. 59: 795–799. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pennington R.E., Tischler C.R., Johnson H.B., and Polley H.W., 1999. Genetic variation for carbon isotope composition in honey mesquite (Prosopis glandulosa). Tree Physiol. 19: 583–589. [PubMed] [Google Scholar]
  • Picon C., Guehl J.M., and Ferhi A., 1996. Leaf gas exchange and carbon isotope composition responses to drought in a drought-avoiding (Pinus pinaster) and a drought-tolerant (Quercus petraea) species under present and elevated atmospheric CO2 concentrations. Plant Cell Environ. 19: 182–190. [Google Scholar]
  • Porte A. and Loustau D., 2001. Seasonal and interannual variations in carbon isotope discrimination in a maritime pine (Pinus pinaster) stand assessed from the isotopic composition of cellulose in annual rings. Tree Physiol. 21: 861–868. [PubMed] [Google Scholar]
  • Ribeiro M.M., Plomion C., Petit R., and Vendramin, G.G., 2001.Variation in chloroplast single–sequence repeats in Portuguese maritime pine (Pinus pinaster Ait.). Theor. Appl. Genet. 102: 97–103. [CrossRef] [Google Scholar]
  • Rowell D.M., Ades P.K., Tausz M., Arndt S.K., and Adams M.A., 2009. Lack of genetic variation in tree ring δ13C suggests a uniform, stomatally-driven response to drought stress across Pinus radiata genotypes. Tree Physiol. 29: 191–198. [CrossRef] [PubMed] [Google Scholar]
  • SAS, 1999. SAS OnlineDoc version eight. SAS, Institute Inc., Cary, NC, USA. [Google Scholar]
  • Sun Z.J., Livingston N.J., Guy R.D., and Ethier G.J., 1996. Stable carbon isotopes as indicators of increased water use efficiency and productivity in white spruce (Picea glauca (Moench) Voss) seedlings. Plant Cell Environ. 19: 887–894. [Google Scholar]
  • Tognetti R., Michelozzi M., and Giovannelli A., 1997. Geographical variation in water relations, hydraulic architecture and terpene composition of Aleppo pine seedlings from Italian provenances. Tree Physiol. 17: 241–250. [PubMed] [Google Scholar]
  • Tognetti R., Michelozzi M., Lauteri M., Brugnoli E., and Giannini R., 2000. Geographic variation in growth, carbon isotope discrimination, and monoterpene composition in Pinus pinaster Ait. provenances. Can. J. For. Res. 30: 1682–1690. [CrossRef] [Google Scholar]
  • Voltas J., Chambel M.R., Prada M.A., and Ferrio J.P., 2008. Climate-related variability in carbon and oxygen stable isotopes among populations of Aleppo pine grown in common-garden tests. Trees 22: 759–769. [CrossRef] [Google Scholar]
  • Warren C.R., McGrath J.F., and Adams M.A., 2001. Water availability and carbon isotope discrimination in conifers. Oecologia 127: 476–486. [CrossRef] [PubMed] [Google Scholar]
  • Zas R., Merlo E., and Fernandez-Lopez J., 2004. Juvenile - Mature genetic correlations in Pinus pinaster ait. under different nutrient × water regimes. Silvae Genet. 53: 124–129. [Google Scholar]
  • Zas R. and Fernandez-Lopez, J., 2005. Juvenile genetic parameters and genotypic stability of Pinus pinaster Ait. open-pollinated families under different water and nutrient regimes. For. Sci. 51: 165–174. [Google Scholar]
  • Zhang J.W. and Mashall J.D., 1995. Variation in carbon-isotope discrimination and photosynthetic gas-exchange among populations of Pseudotsuga menziesii and Pinus ponderosa in different environments. Funct. Ecol. 9: 402–412. [CrossRef] [Google Scholar]
  • Zhang J.W. and Cregg B.M., 1996. Variation in stable carbon isotope discrimination among and within exotic conifer species grown in eastern Nebraska, USA. For. Ecol. Manage. 83: 181–187. [CrossRef] [Google Scholar]