Free Access
Issue
Ann. For. Sci.
Volume 57, Number 5-6, June-September 2000
Second International Workshop on Functional-Structural Tree Models
Page(s) 399 - 412
DOI https://doi.org/10.1051/forest:2000131

References

1
Albrektson A., Sapwood basal area and needle mass of scots pine (Pinus sylvestris L.) trees in central Sweden, Forestry 57 (1984) 35-43.
2
Aloni R., Differentiation of vascular tissues, Ann. Rev. Plant Physiol. 38 (1987) 179-204.
3
Barthélémy D., Caraglio Y., Costes E., Architecture, gradients morphogénétiques et âge physiologique chez les végétaux, in: Bouchon J., de Reffye Ph., Barthélémy D. (Eds.), Modélisation et simulation de l'architecture des végétaux, INRA Éditions, Versailles, France, 1997, pp. 89-136.
4
Ballaré C.L., Light Gaps: Sensing the Light Opportunities in Highly Dynamic Canopy Environments. in: Exploitation of Environmental Heterogeneity by Plants, Caldwell M., Pearcy R (Eds.), Academic Press. London, 1994.
5
Bell G.I., Glasstone S., Nuclear reactor theory, Van Nostrand Rheinhold, New York, 1970.
6
Berninger F., Mäkelä A., Hari P., Optimal control of gas exchange during drought: Empirical evidence, Ann. Bot. 77 (1996) 469-476.
7
Berninger F., Mencucini M., Nikinmaa E., Grace J., Hari P., Evaporative demand determines branchiness of Scots Pine. Oecologia 102 (1995) 164-168.
8
Berninger F., Nikinmaa E., Within tree and between site variation in the foliage area/sapwood area relationship in Scots pine stands in different climatic conditions, Can. J. For. Res. 24 (1994) 2263-2268.
9
Berntson G.M., Scaling, and the description of plant root architecture, in: Plant Roots The Hidden Half. Waisel Y., Eshel A., Kafkafi U. (Eds.) - 2nd ed., rev. and expanded. MDI Dekker, New York, 1996, pp. 259-272.
10
Breckling B., An individual based model for the study of pattern and process in plant ecology: An application of oject oriented programming, EcoSys 4 (1996) 241-254.
11
Brouwer R., Functional equilibrium: sense or nonsense? Neth. J. Agric. Sci. 31 (1983) 335-348.
12
Brouwer R., de Wit C.T., A simulation model of plant growth with special attention to root growth and its consequences, in Root Growth, Washington W.J. (Ed.) Butterworths, London, 1969, pp. 224-244.
13
Buwalda J.G., The carbon cost of root systems of perennial fruit crops, Env. Exp. Bot. 32, 1 (1993) 131-140.
14
Caemmerer von S., Farquhar G.D., Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves, Planta 153 (1981) 376-387.
15
Cannell M.G.R., Dry matter partitioning in tree crops, in Attributes of trees as crop plants, Cannell M.G.R. and Jackson J.E. (Eds.) Institute of Terrestial Ecology, Huntingdon, UK., 1985, pp. 194-207.
16
Caraglio Y., Barthélémy D., Revue critique des termes relatifs à la croissance et à la ramification des tiges des végétaux vasculaires, in: Bouchon J., de Reffye Ph., Barthélémy D. (Eds.), Modélisation et simulation de l'architecture des végétaux, INRA Éditions, Versailles, France, 1997, pp. 11-87.
17
Clausnitzer V., Hopmans J.W., Simultaneous modeling of transient three-dimensional root growth and soil water flow, Plant Soil 164 (1994) 299-314.
18
Deleuze C., Houllier F., A transport model for tree ring width, Silva Fenn. 31 (1997) 239-250.
19
Diggle A.J., ROOTMAP - a model in three-dimensional coordinates of the growth and structure of fibrous root systems, Plant Soil 105 (1988) 169-178.
20
Dixon R.K., Meldahl R.S., Ruark G.A., Warren W.G., Process Modeling of Forest Growth Responses to Environmental Stress, Timber Press, Portland, Oregon, 1990.
21
Le Dizès S., Cruiziat P., Lacointe A., Sinoquet H., Le Roux X., Balandier Ph., Jacquet P., A model for simulating structure-function relationships in walnut tree growth processes, Silva Fenn. 31 (1997) 313-328.
22
Doussan C., Pagès L., Vercambre G., Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption - Model description, Ann. Bot. 81 (1998) 213-223.
23
Eschenbach C., Modelling growth and development of black alder trees with an object oriented approach, ASU Newsletter 24 (1998) 75-86.
24
Espinosa Bancalari M.A., Perry D.A., Marshall J.D., Leaf area- sapwood area relationships in adjacent young Douglas-fir stands with different early growth rates, Can. J. For Res. 17 (1987) 174-180.
25
Fisher J.B., How predictive are computer simulations of tree architecture? Int. J. Plant Sci. 153, 3 (1992) 137-146.
26
Fitter A.H., Characteristics and functions of root systems. In Plant Roots The Hidden Half. Waisel Y., Eshel A., Kafkafi U. (Eds.) - 2nd ed., rev. and expanded, MDI Dekker, New York, 1996, pp. 1-20.
27
Friend A., Kellomäki S., Krujit B., Modelling leaf, tree, and forest responses to increasing atmospheric CO2 and temperature, in: Jarvis P.G. (Ed.) European Forests and Global Change, Cambridge University Press, Cambridge, 1998, pp. 293-334.
28
Früh T., Simulation of water flow in the branched tree architecture, Silva Fenn. 31, 3 (1997) 275-284.
29
Geron C.D., Ruark G.A., Comparison of constant and variable allometric ratios for predicting foliar biomass of various tree genera, Can. J. For. Res. 18 (1988) 1298-1304.
30
Givnish T.J., Adaptation to sun vs. shade: A whole-plant perspective, Aust. J. Plant Physiol. 15 (1988) 63-92.
31
Godin C., Guédon Y., Costes E., Caraglio Y., Measuring and analyzing plants with the AMAPmod software, in: Michaelewicz M. (Ed.), Advances in computational life sciences I: Plants to ecosystems, CSIRO, Australia, 1997, pp. 63-94.
32
Godin C., Caraglio Y., A multistiscale model of plant topology, J. Theor. Biol. 191 (1998) 1-46.
33
Godin C., Guédon Y., Costes E., Exploration of a plant architecture database with the AMAPmod software illustrated on an apple tree hybrid, Agronomie 19 (1999) 163-184.
34
Hallé F., Oldeman R.A.A., Tomlinson P.B., Tropical trees and forests: An architectural analysis. Springer-Verlag, Berlin, Germany, 1978, p. 441.
35
Hanan J., Virtual plants - integrating archtectural and physiological models, Environmental Modelling & Software 12, 1 (1997) 35-42.
36
Hari P., Kellomäki S., Mäkelä A., Ilonen P., Kanninen M., Korpilahti E., Nygren M., Metsikön varhaiskehityksen dynamiikka. (Summary: Dynamics of early development of tree stand), Acta For. Fenn. 177 (1982) 42.
37
Hari P., Kaipiainen L., Korpilahti E., Mäkelä A., Nilson T., Oker-Blom P., Ross J., Salminen R., Structure, radiation and photosynthetic production in coniferous stands, University of Helsinki, Department of Silviculture Research notes No. 54, 1985, p. 233.
38
Hari P., Kaipiainen L., Heikinheimo P., Mäkelä A., Korpilahti E., Salmela J., Trees as a water transport system. Silva Fenn. 20, 3 (1986) 205-210.
39
Hilbert D.W., Reynolds J.F., A model allocating growth among leaf proteins, shoot structure, and root biomass to produce balanced activity, Ann. Bot. 68, 5 (1992) 417-425.
40
Host G.E., Rauscher H.M., Isebrands J.G., Michael D.A., Validation of photosynthate production in ECOPHYS, an ecophysiological growth process model of Populus, Tree Physiol. 7 (1990) 283-296.
41
Jaeger M., Reffye Ph. de, Basic concepts of computer simulation of plant growth, J. Biosci. 17 (1992) 275-291.
42
Jones J.W., Dayan E., Van Keulen H., Challa H., Modelling tomato growth for optimizing greenhouse temperatures and carbon dioxide concentrations, Acta Hort. 248 (1989) 285-294.
43
Kaipiainen L., Hari P., Consistensies in the structure of Scots pine, In Crop physiology of forest trees, Tigertsedt P.M.A., Puttonen P., Koski V. (Eds.) Helsinki University Press, 1985, pp. 31-38.
44
Keane M.G., Weetman G.F., Leaf area - sapwood cross-sectional area relationships in repressed stands of lodgepole pine, Can. J. For. Res. 17 (1987) 205-209.
45
Kellomäki S., Strandman H., A model for the structural growth of young Scots pine crowns based on light interception by shoots, Ecol. Modell. 80 (1995) 237-250.
46
Küppers M., List R., MADEIRA - A simulation of carbon gain, allocation, canopy architecture in competing woody plants, in: Jeremonidis G., Vincent J.F.V. (Eds.) Plant Biomechanics 1997, conference proceedings I: papers, Centre for Biomimetics, The University of Reading, UK., 1997, pp. 321-329
47
Kurth W., Growth Grammar Interpreter GROGRA 2.4. A software tool for the 3-dimensional interpretation of stochastic, sensitive growth grammars in the context of plant modelling, Introduction and reference manual, Berichte des Fortschungszentrums Waldökosysteme, Ser. B38, Göttingen, Germany, 1994, p. 192.
48
Kurth W., Morphological models of plant growth: Possibilities and ecological relevance, Ecol. Modell. 75-76 (1994) 299-308.
49
Kurth W., Sloboda B., Growth grammars simulating trees - an extension of L-systems incorporating local variables and sensitivity, Silva Fenn. 31 (1997) 285-295.
50
Landsberg J.J., Physiological ecology of forest production, Academic Press, London, U.K., 1986, p. 198.
51
Landsberg J.J., Gower S.T., Applications of Physiological Ecology to Forest Management, Academic Press, London, 1997.
52
Lewis P., 3-D plant modelling for remote sensing studies using the Botanical Plant Modelling System, Agronomie 19 (1999) 185-210.
53
Long J.N., Smith F.R., Leaf area- sapwood area relations of lodgepole pine as influenced by stand density and site index, Can. J. For. Res. 18 (1988) 247-250.
54
Lungley D.R., The growth of root systems - A numerical computer simulation model, Plant Soil 38 (1973) 145-159.
55
Mäkelä A., Implications of the pipe model theory on dry matter partitioning and height growth in trees, J. Theor. Biol. 123 (1986) 103-120.
56
Mäkelä A., Sievänen R., Comparison of two shoot-root partitioning models with respect to substrate utilization and functional balance, Ann. Bot. 59 (1987) 129-140.
57
Mäkelä A., Berninger F., Hari P., Optimal control of gas exchange during drought: Theoretical analysis, Ann. Bot. 77 (1996) 461-467.
58
Mandelbrot B.B., The fractal geometry of nature, Freeman, New York, 1983.
59
Mandelbrot B.B., An introduction to multifractal distribution functions, In Fluctuations and Pattern Formation, Stanley H.E., Ostrowsky N. (Eds.), Kluwer, Dordrecht, The Netherlands, 1988.
60
Marcelis L.F.M., Simulation of biomass allocation in greenhouse crops - A review, Acta Hor. 328 (1993) 49-67.
61
Me6nch R., Prusinkiewicz P., Visual models of plants interacting with their environment, Computer Graphics proceedings, Annual Conference Series, SIGGRAPH 96, New Orleans, Louisiana, August 4-9, 1996, pp. 397-410.
62
Mercer L., Prusinkiewicz P., Hanan J., The concept and design of a Virtual Laboratory, in: Graphics Interface '90 Conference proceedings, Canadian Information Processing Society, 1990, pp. 149-155.
63
Middelhoff U., An object oriented model developing competing root systems of black alder-trees, ASU Newsletter 24 (1998) 65-74.
64
Mohren G.M.J., Simulation of forest growth, applied to Douglas fir stand in the Netherlands, Pudoc, Wageningen, 1987, p. 184
65
Mohren G.M.J., Kramer K., Sabaté S., Impacts of Global Change on Tree Physiology and Forest Ecosystems, Kluwer Academic Publishers, Dordrecht, 1997.
66
Monod J., Chance and necessity, Glasgow: Collins Fontana Books, 1972.
67
Noordwijk van M., Spek L.Y., De Willingen P., Proximal root diameters as predictors of total root system size for fractal branching models. I. Theory, Plant Soil 164 (1994) 107-118.
68
Nielsen K.L., Lynch J.P., Jablokow A.G., Curtis P.S., Carbon cost of root systems: An architectural approach, Plant Soil 165 (1994) 161-169.
69
Nikinmaa E., Analyses of the growth of Scots Pine; matching structure with function, Acta For. Fenn. 235, 1992.
70
Nygren P., Leaf CO2 exchange of Erythrina poeppigiana (Leguminosae: Phaseoleae) in humid tropical field conditions, Tree Physiol. 15 (1995) 71-83.
71
Nygren P., Kiema P., Rebottaro S., Canopy development, CO2 exchange and carbon balance of a modeled agroforestry tree, Tree Physiol. 16 (1996) 733-745.
72
Ovington J.D., Dry-matter production of Pinus sylvestris L, Ann. Bot. 21 (1957) 287-314.
73
Ozier-Lafontaine H., Lafolie F., Bruckler L., Tournebize R., Mollier A., Modelling water competition in intercrop: Theory and comparison with field experiment, Plant Soil 204 (1998) 183-201.
74
Ozier-Lafontaine H., Lecompte F., Sillon J.F., Fractal analysis of the root architecture of Gliricidia sepium for the spatial prediction of root branching, size and mass, Model development and evaluation in agroforestry, Plant Soil 209 (1999) 167-180.
75
Pagès L., Jordan M.O., Picard D., A simulation model of the three-dimensional architecture of the maize root system, Plant Soil 119 (1989) 147-154.
76
Parsons R., Stanforth A., Raven J.A., Sprent J.I., Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogen, Plant Cell Environ. 16 (1993) 125-136.
77
Pate J.S., Jeschke W.D., Role of Stems in Transport, Storage, and Circulation of Ions and Metabolites by the Whole Plant, In: Plant Stems Physiology and Functional Morphology. Gartner B.L. (Ed.) Academic Press, san Diego, 1995, pp. 177-204.
78
Perttunen J., Sievänen R., Nikinmaa E., Salminen H., Saarenmaa H., Väkevä J., LIGNUM: A tree model based on simple structural units, Ann. Bot. 77 (1996) 87-98.
79
Perttunen J., Sievänen R., Nikinmaa E., LIGNUM: A model combining the structure and functioning of trees, Ecol. Modell. 108 (1998) 189-198.
80
Prusinkiewicz P., Lindenmayer A., The Algorithmic Beauty of Plants, Springer-Verlag, Berlin, 1990.
81
Prusinkiewicz P., Hammel M., Hanan J., Mench R., Visual models of plant development, in: Rozenberg G., Salomaa A. (Eds.), Handbook of Formal Languages, Vol. 3, Springer, Berlin, 1996, pp. 535-597.
82
Rauscher H.M., Isebrands J.G., Host G.E., Dickson R.E., Dickmann D.I., Crow T.R., Michael D.A., ECOPHYS: An ecophysiological growth process model for juvenile poplar, Tree Physiol. 7 (1990) 255-281.
83
Reffye Ph. de, Houllier F., Blaise F., Barthélémy D., Dauzat J., Auclair D., A model simulating above- and below-ground tree architecture with agroforestry applications, Agrofor. Syst. 30 (1995) 175-197.
84
Reffye Ph. de, Fourcaud T., Blaise F., Barthélémy D., Houllier F., A functional model of tree growth and tree architecture, Silva Fenn. 31 (1997) 297-311.
85
Reffye Ph. de T., Blaise F., Chemouny S., Jaffuel S., Fourcaud T., Houllier F., Calibration of hydraulic growth model on the architecture of cotton plants, Agronomie 19 (1999) 265-280.
86
Rey H., Godin C., Guédon Y., Vers une représentation formelle des plantes, in: Bouchon J., de Reffye Ph., Barthélémy D. (Eds.), Modélisation et simulation de l'architecture des végétaux, INRA Editions, Versailles, France, 1997, pp. 139-171.
87
Room P.M., Maillette L., Hanan J.S., Module and metamer dynamics and virtual plants, Adv. Ecol. Res. 25 (1994) 105-157.
88
Salminen H., Saarenmaa H., Perttunen J., Sievänen Nikinmaa E., Väkevä J., Modelling Trees Using an Object-Oriented Scheme, Math. Comp. Mod. 20, 8 (1994) 49-64.
89
Savidge R.A., Wareing P.F., Plant growth regulators and the differentiation of vascular elements, in: "Xylem cell development", Barnett J.R. (Ed.), Castle House Publications Ltd, Tunbridge Wells, Kent., 1981, pp. 192-235.
90
Schulze E.D., Carbon dioxide and water vapour exchange in response to drought in the atmosphere and in the soil, Ann. Rev. Plant Physiol. 37 (1986) 247-74.
91
Sheppard L.J., Ford. E.D., Genetic and environmental control of crown development in Picea sitchensis and its relation to stem wood production, Tree Physiol. 1 (1986) 341-352.
92
Shibusawa S., Modelling the branching growth fractal patterns of the maize root system, Plant Soil 165 (1994) 339-347.
93
Shinozaki K., Yoda K., Hozumi K., Kira T., A quantitative analysis of plant form - the pipe model theory. I: Basic analyses, Jpn. J. Ecol. 14 (1964) 97-105.
94
Sievänen R., Hari P., Orava J., Pelkonen P., A model for the effect of photosynthate allocation and soil nitrogen on plant growth, Ecol. Modell. 41 (1988) 55-65.
95
Sievänen R., A process-based model for dimensional growth of even-aged stands, Scand. J. For. Res. 8 (1993) 28-48.
96
Sievänen R., Nikinmaa E., Perttunen J., Evaluation of importance of sapwood senescence on tree growth, Silva Fenn. 31 (1997) 329-340.
97
Sims D.J., Pearcy R.W., Photosynthetic Acclimation to Varying Light: A Leaf to Whole-Plant Perspective. In Exploitation of Environmental Heterogeneity by Plants, Caldwell M., Pearcy R. (Eds.) Academic Press. London, 1994.
98
Stafstrom J.P., Developmental Potential of Shoot Buds. In: Plant Stems Physiology and Functional Morphology. Gartner B.L. (Ed) Academic Press, san Diego, 1995, pp. 257-279.
99
Taiz L., Zeiger E., Plant physiology. Benjamin/Cummings Publishing Company, Redwood City, CA, USA, 1991, p. 565.
100
Takenaka A., A simulation model of tree architecture development based on growth response to local light environment, J. Plant Res. 107 (1994) 321-330.
101
Thornley J.H.M., A balanced quantitative model for root:shoot ratios in vegetative plants, Ann. Bot. 36 (1972) 431-441.
102
Thornley J.H.M., A Transport-resistance model of Forest Growth and Partitioning, Ann. Bot. 68 (1991) 211-226.
103
Thornley J.H.M., Shoot:root allocation with respect to C, N and P: Investigation and comparison of resistance and teleonomic models, Ann. Bot. 75 (1995) 391-405.
104
Thornley J.H.M., Modelling allocation with transport/conversion processes, Silva Fenn. 31, 3 (1997) 341-355.
105
Thornley J.H.M., Johnson I.R., Plant and Crop Modelling; A Mathematical Approach to Plant and Crop Physiology, Clarendon Press, Oxford, 1990, p. 669.
106
Valentine H.T., Tree-growth models: derivations employing the pipe model theory, J. Theor. Biol. 117 (1985) 579-584.
107
Vicseck T., Fractal growth phenomena, 2nd ed. World Scientific, Singapore, 1992.
108
Waring R.H., Schroeder P.E., Oren R., Application of pipe model theory to predict canopy leaf area, Can. J. For. Res. 12 (1982) 556-560.
109
Wit C.T. de, Penning de Vries F.W.T., Predictive models in agricultural production, Phil. Trans. Roy. Soc., London. B. 310 (1985) 309-315.
110
Ylinen A., Über die mechanische Schaftformtheorie der Bäume, Silva Fenn. 76 (1952) 1-52.
111
Zhang H., Forde B.G., An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture, Science 279 (1998) 407-409.
112
Zeide B., Pfeiffer P., A method for estimation of fractal dimension of tree crowns, For. Sci. 37 (1991) 1253-1265.
113
Zimmermann M.H., Xylem structure and the ascent of sap, Springer-Verlag, Berlin, Germany, 1983, p. 143.


Abstract

Copyright INRA, EDP Sciences