Free Access
Issue
Ann. For. Sci.
Volume 57, Number 5-6, June-September 2000
Second International Workshop on Functional-Structural Tree Models
Page(s) 413 - 438
DOI https://doi.org/10.1051/forest:2000132

References

1
Adam B., Sinoquet H., Godin C., 3A version 1.0 : Un logiciel pour l'Acquisition de l'Architecture des Arbres, intégrant la saisie simultanée de la topologie au format AMAPmod et de la géométrie par digitalisation 3D, Guide de l'utilisateur, Clermont-Ferrand, France, INRA-PIAF, 1999.
2
Ahuja R.K., Magnanti T.L., Orlin J.B., Network flows. Theory, algorithms, and applications, Prentice Hall, Upper Saddle River, New Jersey, USA, 1993.
3
André J.P., A study of vascular organization of Bamboos (Poaceae-Bambuseae) using a microcasting method, IAWA Journal 19, 3 (1998) 265-278.
4
Arneodo A., Argoul F., Bacry E., Elezgaray J., Muzy J.F., Ondelettes, multifractales et turbulences - de l'ADN aux croissances cristallines, Diderot Editeur, Paris, France, 1995.
5
Audergon J.M., Monestiez P., Habib R., Spatial dependences and sampling in a fruit tree: a new concept for spatial prediction in fruit studies, J. Horticult. Sci. 68, 1 (1993) 99-112.
6
Baker C.J., The development of a theoretical model for the windthrow of plants, J. Theor. Biol. 175, 3 (1995) 355-372.
7
Banegas F., Michelucci D., Roelens M., Jaeger M., Canovas F., Hierarchical automated clustering of cloud point set by ellipsoidal skeleton, Application to organ geometric modeling from CT-scan images, in: SPIE's International Symposium on Medical Imaging 1999, San Diego, USA, 1999, in press.
8
Barczi J.F., de Reffye P., Caraglio Y., Essai sur l'identification et la mise en oeuvre des paramètres nécessaires à la simulation d'une architecture végétale : le logiciel AMAPsim, in: Bouchon J., de Reffye P., Barthélémy D. (Eds.), Modélisation et Simulation de l'Architecture des Végétaux, INRA Éditions, Paris, France, 1997, pp. 205-254.
9
Barnsley M.F., Fractals everywhere, Academic press, Boston, 1988.
10
Barthélémy D., Edelin C., Halle F., Architectural concepts for tropical trees, in: Holm-Nielsen L.B., Nielsen I.C., Balslev E. (Eds.), Symposium on Tropical Forests, Academic Press, London, Aarhus, Danemark, 1989, pp. 89-100.
11
Barthélémy D., Edelin C., Halle F., Canopy architecture, in: Raghavendra A.S. (Ed.) Physiology of trees, John Wiley and Sons Inc., 1991, pp. 1-20.
12
Bell A.D., The simulation of branching patterns in modular organisms, Phil. Trans. R. Soc. London 313 (1986) 143-159.
13
Bell A.D., Plant form, An illustrated guide to flowering plant morphology, Oxford University Press, Oxford, 1991.
14
Bell A.D., Roberts D., Smith A., Branching patterns: the simulation of plant architecture, J. Theor. Biol. 81 (1979) 351-375.
15
Bertin N., Environnement climatique, compétition pour les assimilats et modélisation de la nouaison de la tomate en culture sous serre, Ph.D. Thesis, INRA, Paris Grignon, 1993.
16
Birnbaum P., Modalités d'occupation de l'espace par les arbres en forêt guyanaise, Ph.D. Thesis, Université Paris VI, Paris, France, 1997.
17
Blaise F., Simulation du parallélisme dans la croissance des plantes et applications, Ph.D. Thesis, Université Louis Pasteur (ULP), Strasbourg, France, 1991.
18
Blaise F., Barczi J.F., Jaeger M., Dinouard P., de Reffye P., Simulation of the growth of plants. Modeling of metamorphosis and spatial interactions in the architecture and development of plants, in: Kunii T.L., Luciani A. (Eds.), Cyberworlds, John Wiley & Sons, Ltd, Tokyo, Japon, 1998, pp. 81-109.
19
Borchert R., Honda H., Control of development in the bifurcating branch system of Tabeduia rosea: a computer simulation, Botanical Gazette 145, 2 (1985) 184-195.
20
Bouchon J., de Reffye P., Barthélémy D. (Eds.), Modélisation et simulation de l'architecture des végétaux, INRA Éditions, Paris, France, 1997.
21
Caraglio Y., Edelin C., Architecture et dynamique de la croissance du platane, Platanus hybrida Brot. (Platanaceae) {syn. Platanus acerifolia (Aiton) Willd.}, Bulletin de la Société Botanique de France, Lettres botaniques 137, 4-5 (1990) 279-291.
22
Cescatti A., Modelling the radiative transfer in discontinuous canopies of asymmetric crowns. I. Model structure and algorithms, Ecol. Modell. 101 (1997) 263-274.
23
Chelle M., Développement d'un modèle de radiosité mixte pour simuler la distribution du rayonnement dans les couverts végétaux, Ph.D. Thesis, Université de Rennes I, Rennes, France, 1997.
24
Chen S.G., Ceulemans R., Impens I., A fractal-based Populus canopy structure model for the calculation of light interception, For. Ecol. Manag. 69, 1-3 (1994) 97-110.
25
Chen W.K., Applied graph theory, North Holland Publ. Co., Amsterdam, The Netherlands, 1976.
26
Cluzeau C., Dupouey J.L., Courbaud B., Polyhedral representation of crown shape, A Geometric tool for growth modelling, Ann. Sci. For. 52 (1995) 297-306.
27
Costes E., Sinoquet H., Godin C., Kelner J.J., 3D digitizing based on tree topology: application to study the variability of apple quality within the canopy, Acta Horticulturae (1999) in press.
28
Damez C., Application de la méthode de radiosité aux simulations botaniques, Mémoire de DEA Imagerie, vision et Robotique, Paris, INAPG, 1998.
29
Danjon F., Sinoquet H., Godin C., Colin F., Drexhage M., Characterisation of structural tree root architecture using 3D digitising and AMAPmod software, Plant Soil 211, 2 (1999) 241-258.
30
Dauzat J., Simulated plants and radiative transfer simulations, in: Varlet-Grancher C., Bonhomme R., Sinoquet H. (Eds.), Colloque Structure du Couvert Végétal et Climat Lumineux: méthodes de caractérisation et applications, INRA Editions, Saumane, France, 1993, pp. 271-278.
31
Dauzat J., Eroy M.N., Simulating light regime and intercrop yields in coconut based farming systems, Eur. J. Agron. 7 (1997) 63-74.
32
Dauzat J., Rapidel B., Berger A., Simulation of leaf transpiration and sap flow in virtual plants: description of the model and application to a coffee plantation in Costa Rica, Agricult. For. Meteor. (1999) in press.
33
de Reffye P., Dinouard P., Barthélémy D., Architecture et modélisation de l'Orme du Japon Zelkova serrata (Thunb.) Makino (Ulmaceae): la notion d'axe de référence, in: De la forêt cultivée à l'industrie de demain, 3$^{\rm e}$ Colloque Sciences et Industries du Bois, Arbora, Bordeaux, France, 1990, pp. 351-352.
34
de Reffye P., Edelin C., Françon J., Jaeger M., Puech C., Plant models faithful to botanical structure and development, in: SIGGRAPH'88, Atlanta, USA, 1988, pp. 151-158.
35
de Reffye P., Fourcaud T., Blaise F., Barthélémy D., Houllier F., A functional model of tree growth and tree architecture, Silva Fenn. 31, 3 (1997) 297-311.
36
de Reffye P., Houllier F., Blaise F., Fourcaud T., Essai sur les relations entre l'architecture d'un arbre et la grosseur de ses axes végétatifs, in: Bouchon J., de Reffye P., Barthélémy D. (Eds.), Modélisation et Simulation de l'Architecture des Végétaux, INRA Éditions, Paris, France, 1997, pp. 255-423.
37
Deleuze C., Houllier F., A transport model for tree ring width, Silva Fenn. 31, 3 (1997) 239-250.
38
Deussen O., Hanrahan P., Lintermann B., Mech R., Pharr M., Prunsinkiewicz P., Realistic modeling and rendering of plant ecosystems, in: SIGRAPPH'98, ACM, Orlando, Florida, USA, 1998.
39
Diggle A.J., ROOTMAP-A model in three-dimensional coordinates of the growth and structure of fibrous root systems, Plant Soil 105 (1988) 169-178.
40
Edelin C., The monopodial architecture: the case of some trees species from tropical Asia, Research Pamph. 105 (1990).
41
Ewers F.W., Cruiziat P., Measuring water transport and storage, in: Lassoic J.P., Hinckley T.M. (Eds.), Techniques and approaches in forest tree physiology, CRC Press, Boca Raton, USA, 1991, pp. 91-115.
42
Falconer K., Fractal geometry: mathematical foundation and applications, John Wiley & Sons, Chichester, 1990.
43
Ferraro P., Godin C., A distance measure between plant architectures, Ann. For. Sci. 57 (2000) 445-461.
44
Fisher J.B., How predictive are computer simulations of tree architecture?, Int. J. Plant Sci. 153, 3 (1992) 137-146.
45
Fisher J.B., Weeks C.L., Tree architecture of Neea Nyctaginaceae: geometry and simulation of branches and the presence of two different models, Bull. Mus. Hist. Nat. 7 (1985) 385-401.
46
Fitter A.H., The topology and geometry of plant root systems: influence of watering rate on root system topology in Trifolium pratense, Ann. Botany 58 (1986) 91-101.
47
Fitter A.H., An architectural approach to the comparative ecology of plant root systems, New Phytologist 106 (Suppl.) (1987) 61-77.
48
Ford E.D., Avery A., Ford R., Simulation of branch growth in the Pinaceae: interactions of morphology, phenology, foliage productivity, and the requirement for structural support, on the export of carbon, J. Theor. Biol. 146 (1990) 15-36.
49
Fourcaud T., Analyse du comportement mécanique d'une plantes en croissance par la méthode des éléments finis, Ph.D. Thesis, Université de Bordeaux I, Bordeaux, France, 1995.
50
Fourcaud T., Lac P., Mechanical analysis of the form and internal stresses of a growing tree by the finite element method, in: Engin A.E. (Ed.) PD-Vol. 77, Engineering Systems Design Analysis Proceedings, ASME, 1996, pp. 213-220.
51
Früh T., Simulation of water flow in the branched tree architecture, Silva Fenn. 31, 3 (1997) 275-285.
52
Godin C., Caraglio Y., A multiscale model of plant topological structures, J. Theor. Biol. 191 (1998) 1-46.
53
Godin C., Costes E., Caraglio Y., Exploring plant topology structure with the AMAPmod software: an outline, Silva Fenn. 31, 3 (1997) 355-366.
54
Godin C., Costes E., Sinoquet H., A method for describing plant architecture which integrates topology and geometry, Ann. Botany 84 (1999) 343-357.
55
Godin C., Guédon Y., Costes E., Exploration of plant architecture databases with the AMAPmod software illustrated on an apple-tree hybrid family, Agronomie 19, 3-4 (1999) 163-184.
56
Godin C., Guédon Y., Costes E., Caraglio Y., Measuring and analyzing plants with the AMAPmod software, in: Michalewicz M.T. (Ed.) Plants to ecosystems - Advances in Computational Life Sciences, 2nd International Symposium on Computer Challenges in Life Science, CSIRO Australia, Melbourne, Australia, 1997, pp. 53-84.
57
Gondran M., Minoux M., Graphs and algorithms, Wiley-Interscience, New-York, 1984.
58
Gouyet J.F., Physique et structures fractales, Masson, Paris, France, 1992.
59
Greene N., Voxel space automata: modeling with stochastic growth processing in voxel space, Comp. Graph. 23, 3 (1989) 175-184.
60
Hallé F., Modular growth in seed plants, Phil. Trans. R. Soc. London 313 (1986) 77-87.
61
Hallé F., Oldeman R.A.A., Tomlinson P.B., Tropical trees and forests, An architectural analysis, Springer-Verlag, New-York, 1978.
62
Hanan J.S., Room P.M., Practical aspects of plant research, in: Michalewicz M.T. (Ed.) Plants to ecosystems - Advances in Computational Life Sciences, 2nd International Symposium on Computer Challenges in Life Science, CSIRO publishing, Melbourne, Australia, 1997, pp. 28-43.
63
Harper J.L., Rosen B.R., White J., The growth and form of modular organisms, The Royal Society, London, UK, 1986.
64
Hill D.R.C., Object-oriented analysis and simulation, Addison-Wesley Publ. Co., Harlow, UK, 1996.
65
Honda H., Description of the form of trees by the parameters of the tree-like body: Effects of the branching angle and the branch length on the shape of the tree-like body, J. Theor. Biol. 31 (1971) 331-338.
66
Jaeger M., Représentation et simulation de la croissance des végétaux, Ph.D. Thesis, Université Louis Pasteur (ULP), Strasbourg, France, 1987.
67
Jaeger M., Leban J.M., Chemouny S., Saint André L., 3D stem reconstruction from CT scan exams, in: Biological improvement of wood properties, Third Workshop IUFRO WP S5.01-04, La Londe-Les-Maures, France, 1999, accepted.
68
Janssen J.M., Lindenmayer A., Models for the control of branch positions and flowering sequences of capitula in Mycelis muralis (L.) Dumont (Compositae), New Phytologist 105 (1987) 191-220.
69
Johnson R.S., Lakso A.N., Approaches to modeling light interception in orchards, HortScience 26, 8 (1991) 1002-1004.
70
Jourdan C., Rey H., Modelling and simulation of the architecture and development of the oil-palm (Elaeis guineensis Jacq.) root system. I. The model, Plant Soil 190 (1997) 217-233.
71
Keisling T., Counce P., An encoding process for morphological analysis of soybean fruit distribution, Crop Sci. 37 (1997) 1665-1669.
72
Kurth W., Growth grammar interpreter GROGRA 2.4: A software for the 3-dimentional interpretation of stochastic, sensitive growth grammar in the context of plant modelling, Introduction and Reference Manual, Forschungszentrum Waldokosysteme der Universitat Gottingen, 1994.
73
Kurth W., Morphological models of plant growth: possibilities and ecological relevance, Ecol. Modell. 75-76 (1994) 299-308.
74
LeDizès S., Cruiziat P., Lacointe A., Sinoquet H., LeRoux X., Balandier P., Jacquet P., A Model for simulating structure-function relationships in walnut tree growth processes, Silva Fenn. 31 (1997) 313-328.
75
Lewis P., 3-D plant modelling for remote sensing simulation studies using the Botanical Plantb Modelling System, Agronomie 19, 3-4 (1999) 185-210.
76
Luck H.B., Luck J., Modélisation du fonctionnement d'un méristème par des L-systèmes et des systèmes de graphes et de cartes à réécriture parallèle, in: Le Guyadère H. (Ed.), Masson, Paris, France, 1987, pp. 375-395.
77
Mäkelä A.A., Sievänen R.P., Comparison of two shoot-root partitioning models with respect to substrate utilization and functional balance, Ann. Botany 59 (1987) 129-140.
78
Mandelbrot B.B., The fractal geometry of nature, W.N. Freeman, New York, USA, 1983.
79
Mandelbrot B.B., Fractals, in: Meyers R.A. (Ed.) Encyclopedia of physical science and technology, Academic Press, Orlando, Florida USA, 1987.
80
McMurtrie R.E., Forest productivity in relation to carbon partitioning and nutrient cycling: a mathematical model, in: Cannell M.G.R., Jackson J.E. (Eds.), Attributes of trees as crops plant, ITE, Monks Wood, Abbots Ripton, Hunts, UK, 1985, pp. 194-207.
81
Mitchell K.J., Dynamics and simulated yield of Douglas-fir, For. Sci. 21, 4 (1975) 1-39.
82
Newman W.I., Turcotte D.L., Gabrielov A.M., Fractal trees with side branching, Fractals 5, 4 (1997) 603-614.
83
Nikinmaa E., Analyses of the growth of scots pine; matching structure with function, Acta For. Fenn. 235 (1992) 3-68.
84
Norman J.M., Welles J.M., Radiative transfer in an array of canopies, Agronomy J. 75 (1983) 481-488.
85
Oosterhuis L., Oldeman R.A.A., Sharik T.L., Architectural approach to analysis of North American temperate deciduous forests, Canadian J. For. Res. 12, 4 (1982) 835-847.
86
Oppenheimer P.E., Real time design and animation of fractal plants and trees, in: Evans D.C., Athay R.J. (Eds.), SIGGRAPH'86, ACM, Dallas, Texas USA, 1986, pp. 55-64.
87
Pagès L., Root system architecture: from its represention to the study of its elaboration, Agromonie 19, 3/4 (1999) 295-304.
88
Perttunen J., Sievänen R., Nikinmaa E., Salminen H., Saarenmaa H., Väkevä J., LIGNUM: a tree model based on simple structural units, Ann. Botany 77 (1996) 87-98.
89
Preparata F., Yeh R., Introduction to discrete structures for computer science and engineering, Addison-Wesley, Reading Menlo Park London, 1973.
90
Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., Numerical recipes in C. The art of scientific computing, 2nd ed., Cambridge University Press, Cambridge, 1996.
91
Prusinkiewicz P., (project leader), Virtual Plant Laboratory. A hypertext document and software distribution, http://www.cpsc.ucalgary.ca/projects/bmv/vlab/index.html (1996).
92
Prusinkiewicz P., Modeling of spatial structure and development of plants: a review, Scientia Horticult. 74 (1998) 113-149.
93
Prusinkiewicz P., Hammel M., Hanan J., Mech R., L-system: from the theory to visual models of plants, in: Michalewicz M.T. (Ed.) Plants to Ecosystems. Advances in Computational Life Sciences, I, CSIRO publishing, Melbourne, 1997, pp. 1-27.
94
Prusinkiewicz P., Hanan J., Lindenmayer systems, fractals, and plants, Springer Verlag, New-York, 1989.
95
Prusinkiewicz P., James M., Mech R., Synthetic topiary, in: Computer Graphics Proceedings, 1994, pp. 351-358.
96
Prusinkiewicz P., Lindenmayer A., The algorithmic beauty of plants, Springer Verlag, New York, 1990.
97
Prusinkiewicz P., Remphrey W.R., Davidson C.G., Hammel M.S., Modeling the architecture of expanding Fraxinus pennsylvanica shoots using L-systems, Canadian J. Botany 72 (1994) 701-714.
98
Rao S.S., The finite element method in engineering., 3rd ed, Butterworth Heinemann, Boston, USA, 1999.
99
Remphrey W.R., Neal B.R., Steeves T.A., The morphology and growth of Arctostaphylos uva-ursi bearberry: an architectural model simulating colonizing growth, Canadian J. Botany 61 (1983) 2451-2458.
100
Remphrey W.R., Prusinkiewicz P., Quantification and modelling tree architecture, in: Advances in computational life sciences, Vol. I: Plants to Ecosystems, CSIRO, Australia, 1997, pp. 45-52.
101
Rey H., Godin C., Guedon Y., Vers une représentation formelle des plantes, in: Bouchon J., de Reffye P., Barthélémy D. (Eds.), Modélisation et Simulation de l'Architecture des Végétaux, INRA Éditions, Paris, France, 1997, pp. 139-171.
102
Robinson D.F., A symoblic framework for the description of tree architecture models, Botan. J. Linn. Soc. 121 (1996) 243-261.
103
Room P.M., Maillette L., Hanan J.S., Module and metamer dynamics and virtual plants, Adv. Ecol. Res. 25 (1994) 105-157.
104
Ross J.K., The radiation regim and the architecture of plant stands, Junk W. Pubs., The Hague, The Netherlands, 1981.
105
Salminen H., Saarenmaa H., Pertunen J., Sievänen R., Väkevä J., Nikinmaa E., Modelling trees using and object-oriented scheme, Math. Comp. Model. 20, 8 (1994) 49-67.
106
Shimizu H., Heins R.D., Computer vision based system for plant growth analysis, Trans. ASAE 38, 3 (1995) 959-964.
107
Shinozaki K., Yoda K., Hozumi K., Kira T., A quantitative analysis of plant. The Pipe Model theory I, Jpn. J. Ecol. 14, 3 (1964) 97-105.
108
Shinozaki K., Yoda K., Hozumi K., Kira T., A quantitative analysis of plant. The Pipe Model theory. I. Basic analyses, Jpn. J. Ecol. 14, 3 (1964) 97-105.
109
Sillion F.X., Hierarchical solution techniques for realistic rendering, in: State of the Art Report - Graphicon'95 Conférence, St Petersburg, Russia, 1995.
110
Sinoquet H., Adam B., Rivet P., Godin C., Interactions between light and plant architecture in an agroforestry walnut tree, in: Agroforestry Forum, 1998, pp. 37-40.
111
Sinoquet H., Bonhomme R., Modeling raditive tranfer in mixed and row intercropping systems, Agricult. For. Meteor. 62 (1992) 219-240.
112
Sinoquet H., Rivet P., Godin C., Assessment of the three-dimensional architecture of walnut trees using digitising, Silva Fenn. 31, 3 (1997) 265-273.
113
Sinoquet H., Thanisawanyangkura S., Mabrouk H., Kasemsap P., Characterisation of the light environment in canopies using 3D digitising and image processing, Ann. Botany 82 (1998) 203-212.
114
Smith A.R., Plants, fractals, and formal languages, Comp. Graph. 18, 3 (1984).
115
Smith G.S., Curtis J.P., Edwards C.M., A Method for analysing plant Architecture as it relates to fruit quality using three-dimensional computer graphics, Ann. Botany 70 (1992) 265-269.
116
Sperry J.S., Adler F.R., Campbell G.S., Comstock J.P., Limitation of plant water use by rhizosphere and xylem conductance: results from a model, Plant Cell Environ. 21 (1998) 347-360.
117
Takenaka A., A simulation model of tree architecture development based on growth response to local light environment, J. Plant Res. 107 (1994) 321-330.
118
Tarjan R.E., Data structures and network algorithms, Society for Industrial and Applied Mathematics, Phyladelphia, Pennsilvania, USA, 1983.
119
Thornley J.H.M., A model to describe the partitioning of photosynthate during vegetative plant growth, Ann. Botany 33 (1969) 419-430.
120
Thornley J.H.M., A balanced quantitative model for root:shoot ratios in vegetative plants, Ann. Botany 36 (1972) 431-441.
121
Thornley J.H.M., Johnson I.R., Plant and crop modeling: a mathematical approach to plant and crop physiology, Oxford University Press, New York, 1990.
122
Tricot C., Courbes et dimensions fractales, Springer-Verlag, Paris, 1993.
123
Tyree M.T., Ewers F.W., The hydraulic architecture of trees and other woody plants, New Phytolology 119 (1991) 345-360.
124
Valentine H.T., Tree-growth models: dérivations employing the Pipe-model theory, J. Theor. Biol. 117, 4 (1985) 579-585.
125
Viennot X.G., Eyrolles G., Janey N., Arquès D., Combinatorial analysis of ramified patterns and computer imagery of trees, in: SIGGRAPH'89, ACM, Boston, USA, 1989, pp. 31-40.
126
Watson C.E., Bourland F.M., COTMAP, an interactive microcomputer program for mapping plant structure and fruiting patterns of cotton, in: J.M B. (Ed.) Proceedings of the Beltwid Cotton Production Research Conferences, Menphis, USA: National Cotton Council of America, Nashwille, USA, 1989, pp. 131-134.
127
Weber J., Penn J., Creation and rendering of realistic trees, in: Computer Graphics Proceedings, Annual Conference Series, Acm Siggraph, 1995, pp. 381-394.
128
White J., The plant as a metapopulation, Ann. Rev. Ecol. Syst. 10 (1979) 109-145.
129
Zeide B., Fractal geometry and forest measurements, in: LaBau V.J., Cunia T. (Eds.), The state-of-the-art methodology of forest inventory, USDA Forest Service, 1990, pp. 260-266.
130
Zeide B., Fractal geometry in forestry applications, For. Ecol. Manag. 46 (1991) 179-188.
131
Zeide B., Pfeifer P., A methode for estimation of fractal dimension of tree crown, For. Sci. 37, 5 (1991) 1253-1265.
132
Zimmermann M.H., Hydraulic architecture of some diffuse-porous trees, Canadian J. Botany 56 (1978) 2286-2295.


Abstract

Copyright INRA, EDP Sciences