Free Access
Issue
Ann. For. Sci.
Volume 57, Number 5-6, June-September 2000
Second International Workshop on Functional-Structural Tree Models
Page(s) 599 - 609
DOI https://doi.org/10.1051/forest:2000145

References

1
Acock B., Reddy V.R., Designing an object-oriented structure for crop models, Ecol. Modell. 94 (1997) 33-45.
2
Baldocchi D.D., Harley P.C., Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. II. Model testing and application, Plant Cell Environ. 18 (1995) 1157-1173.
3
Ballaré C.L., Scopel A.L., Sánchez R.A., Foraging for light: photosensory ecology and agricultural implications, Plant Cell Environ. 20 (1997) 820-825.
4
Björkman O., Responses to different quantum flux densities, in: Lange O.L., Nobel P.S., Osmond C.B., Ziegler H. (Eds.), Encyclopedia of Plant Physiology, NS 12A, Springer, Berlin, Heidelberg, New York, 1981, pp. 409-444.
5
Boardman N.K., Comparative photosynthesis of sun and shade plants, Ann. Rev. Plant Physiol. 28 (1977) 355-377.
6
Breckling B., An individual based model for the study of pattern and process in plant ecology: an application of object oriented programming, EcoSys. 4 (1996) 241-254.
7
Caldwell M.M., Meister H.-P., Tenhunen J.D., Lange O.L., Canopy structure, light microclimate and leaf gas exchange of Quercus coccifera L. in a Portuguese macchia: measurements in different canopy layers and simulations with a canopy model, Trees 1 (1986) 25-41.
8
Cermak J., Solar equivalent leaf area: an efficient biometrical parameter of individual leaves, trees and stands, Tree Physiol. 5 (1988) 269-289.
9
Dahl O.J., Myrhaug B., Nygaard K., SIMULA. Common base language, Oslo (Norwegian Computing Centre) 1968.
10
Dauzat J., Simulated plants and radiative transfer simulations, in: Varlet-Grancher C., Bonhomme R., Sinoquet H. (Eds.), Crop structure and light microclimate, INRA, Paris, 1993, pp. 271-278.
11
Deleuze C., Hollinger F., A transport model for tree ring width, Silva Fenn. 3 (1997) 239-250.
12
Ellenberg H., Vegetation Mitteleuropas mit den Alpen, Ulmer Stuttgart, 1996.
13
Ellsworth D.S., Reich P.B., Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest, Oecologia 96 (1993) 169-178.
14
Eschenbach C., Zur Physiologie und Ökologie der Schwarzerle (Alnus glutinosa). On the physiology and ecology of black alder (Alnus glutinosa). Dissertation, University Kiel (1995) 197 pp.
15
Eschenbach C., Modellierung der Primärproduktion der Schwarzerle (Alnus glutinosa). Modelling of primary production of black alder (Alnus glutinosa), Ecosys. 4 (1996) 195-206.
16
Eschenbach C., Zur Ökophysiologie der Primärproduktion der Schwarzerle (Alnus glutinosa (L.) Gaertn.). On the ecophysiology of primary production of black alder (Alnus glutinosa (L.) Gaertn.), Verh. Ges. Ökol. 26 (1996) 89-95.
17
Eschenbach C., Kappen L., Leaf area index determination in an alder forest - A comparison of three methods, J. Exp. Bot. 47 (1997) 1457-1462.
18
Eschenbach C., Modelling Growth and Development of Black Alder Trees with an Object Oriented Approach, Proceedings of the 24th Conference of the Association of SIMULA Users, ASU Newslett. 24 (1998) 75-86.
19
Evans J.R., von Caemmerer S., Adams III W.W. (Eds.), Ecology of photosynthesis in sun and shade, CSIRO, Melbourne, 1988.
20
Früh T., Simulation of water flow in the branched tree architecture, Silva Fenn. 3 (1997) 275-284.
21
Gansert D., Sprick W., Storage and mobilization of nonstructural carbohydrates and biomass development of beech seedlings (Fagus sylvatica L.) under different light regimes, Trees 12 (1998) 247-257.
22
Givnish T.J., Adaptation to sun and shade: a whole plant perspective, Austr. J. Plant Phys. 15 (1988) 63-92.
23
Hegi G., Illustrierte Flora von Mittel-Europa, Lehmann's Verlag, München, 1935.
24
Kellomäki S., Strandman H., A model for the structural growth of young Scots pine crowns based on light interception by shoots, Ecol. Modell. 80 (1995) 237-250.
25
Korpilahti E. (Ed.), Functional-Structural Tree Models, papers selected from the Helsinki Workshop on Functional-Structural Tree Models, 12-13 September, 1996, Silva Fenn. 3 (1997) 239-380.
26
Leitungsgremium des Ökosystemforschungsprojektes Bornhöveder Seenkette und Vorstand des Vereins zur Förderung der Ökosystemforschung zu Kiel e.V. (Eds.), Ökosystemforschung im Bereich der Bornhöveder Seenkette, Arbeitsbericht 1988-1991, EcoSys. 1, 1992.
27
List R., Küppers M., Kohlenstofferwerb und Kronenarchitektur von Holzgewächsen in Konkurrenzsituationen - Messung an Einzelzweigen, Modellierung für Pflanzengruppen, EcoSys. Suppl. 20 (1997) 89-99.
28
Monsi M., Saeki T., Über den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung für die Stoffproduktion, Jpn. J. Bot. 14 (1953) 22-52.
29
Nilsen E.T., Orcutt D.M., The physiology of plants under stress, abiotic factors, John Wiley & Sons, INC, New York, 1996.
30
Osmond C.B, Chow W.S., Ecology of photosynthesis in the sun and shade: summary and prognostications, Austr. J. Plant Physiol. 15 (1988) 1-9.
31
Pearcy R.W., Yang W., A three-dimensional shoot architecturel model for assessment of light capture and carbon gain by understory plants, Oecologia 108 (1996) 1-12.
32
Pearcy R.W., Sims D.A., Photosynthetic acclimation to changing light environments: scaling from the leaf to the whole plant, in: Caldwell M.M., Pearcy R.W. (Eds.), Exploitation of environmental heterogeneity by plants: ecophysiological processes above and below ground, Academic Press, San Diego, 1994, pp. 145-174.
33
Pugnaire F.I., Valladares F., Handbook of functional plant ecology, Marcel Dekker, New York, 1999.
34
Ross J., The radiation regime and architecture of plant stands, Dr. W. Junk Publishers, The Hague, 1982.
35
Sands P.J., Modelling canopy production. II. From single-leaf photosynthetic parameters to daily canopy photosynthesis, Austral. J. Bot. 69 (1995) 603-614.
36
Schleuß U., Böden und Bodeneigenschaften einer Norddeutschen Moränenlandschaft - Ökologische Eigenschaften, Vergesellschaftung und Funktionen der Böden im Bereich der Bornhöveder Seenkette, EcoSys. Suppl. 2, 1992.
37
Schrautzer J., Härdtle W., Hemprich G., Wiebe C., Zur Synökologie und Synsystematik gestörter Erlenwälder im Gebiet der Bornhöveder Seenkette (Schleswig-Holstein), Tuexenia 11 (1991) 293-307.
38
Schulte M., Saisonale und interannuelle Variabilität des CO2-Gaswechsels von Buchen (Fagus sylvatica L.) Bestimmung von C-Bilanzen mit Hilfe eines empirischen Modells, Verlag Shaker, Aachen, 1992.
39
v.Stamm S., Untersuchungen zur Primärproduktion von Corylus avellana an einem Knickstandort in Schleswig-Holstein und Erstellung eines Produktionsmodells, EcoSys Suppl. 3 (1992) 166.
40
Sievänen R., Nikinmaa E., Perttunen J., Evaluation of importance of sapwood senescence on tree growth using the model LIGNUM, Silva Fenn. 3 (1997) 329-340.
41
Sprugel D.G., Hinckley T.M., Schaap W., The theory and practice of branch autonomy, Ann. Rev. Ecol. Syst. 22 (1991) 309-334.
42
Stenberg P., Penumbra in within-shoot and between-shoot shading in conifers and its significance for photosynthesis, Ecol. Modell. 77 (1995) 215-231.
43
Valladares F., Architecture, ecology, and evolution of plant crowns, in: Pugnaire F.I., Valladares F. (Eds.), Handbook of functional plant ecology, Marcel Dekker, New York, 1999.


Abstract

Copyright INRA, EDP Sciences