Free Access
Issue
Ann. For. Sci.
Volume 61, Number 2, March 2004
Page(s) 109 - 115
DOI https://doi.org/10.1051/forest:2004001
References of Ann. For. Sci. 61 109-115
  1. Alemdag I.S., A ratio method for calculating stem volume to merchantable limits, and associated taper equations, For. Chron. 64 (1988) 18-26.
  2. Allen P.J., Average relative stem profile comparisons for three size classes of Caribbean pine, Can. J. For. Res. 23 (1993) 2594-2598.
  3. Crowley P.H., Resampling methods for computation-intensive data analysis in ecology and evolution, Annu. Rev. Ecol. Syst. 23 (1992) 405-447 [CrossRef].
  4. Fang Z., Borders B.E., Bailey R.L., Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors, For. Sci. 46 (2000) 1-12.
  5. Flewelling J.W., Raynes L.M., Variable-shape stem-profile predictions for western hemlock. Part I. Predictions from DBH and total height, Can. J. For. Res. 23 (1993) 520-536.
  6. Forslund R.R., The power function as a simple stem profile examination tool, Can. J. For. Res. 21 (1991) 193-198.
  7. Fowler J.H., Rennie J.C., Merchantable height in lieu of total height in stem profile equations, For. Sci. 34 (1988) 505-511.
  8. Kozak A., A variable exponent taper equation, Can. J. For. Res. 18 (1988) 1363-1368.
  9. Larson P.R., Stem form development of forest trees, For. Sci. Monogr. 5, 1963, 42 p.
  10. LeMay V.M., Kozak A., Marshall P.L., Muhairwe C., Literature review for development of a dynamic taper model for tree growth, Internal Report for the B.C. Science Council, Vancouver, British Columbia, 1991, 60 p.
  11. Manly B.F.J., Randomization, bootstrap and Monte Carlo methods in biology, Chapman & Hall, New York, 1997, 424 p.
  12. Morris D.M., Forslund R.R., The relative importance of competition, microsite, and climate in controlling the stem taper and profile shape in jack pine, Can. J. For. Res. 22 (1992) 1999-2003.
  13. Muhairwe C.K., LeMay V.M., Kozak A., Effects of adding tree, stand, and site variables to Kozak's variable-exponent taper equation, Can. J. For. Res. 24 (1994) 252-259.
  14. Newnham R.M., A variable-form taper equation, Canadian Forest Service, Petawawa National Forest Institute, Information Report PI-X-83, 1988.
  15. Ormerod D.W., A simple bole model, For. Chron. 49 (1973) 136-138.
  16. Pitt D.G., Kreutzweiser D.P., Application of computer-intensive statistical methods to environmental research, Ecotoxicol. Environ. Saf. 39 (1998) 78-97 [CrossRef] [PubMed].
  17. Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T., Numerical recipes in Pascal, Cambridge University Press, Port Chester, New York, 1994, 759 p.
  18. Rice J.A., MacDonald G.B., Weingartner D.H., Pre-commercial thinning of trembling aspen in northern Ontario: Part 1, Growth responses, For. Chron. 77 (2001) 893-901.
  19. Rustagi K.P., Loveless R.S., Compatible variable-form volume and stem profile equations for Douglas-fir, Can. J. For. Res. 21 (1991) 143-151.
  20. Seber G.A.F., Linear Regression Analysis, John Wiley and Sons, New York, 1977, 465 p.
  21. Valentine H.T., Gregoire T.G., A switching model of bole taper, Can. J. For. Res. 31 (2001) 1400-1409 [CrossRef].
  22. Zakrzewski W.T., A mathematically tractable stem profile model for jack pine in Ontario, North. J. Appl. For. 16 (1999) 138-143.