Free Access
Issue
Ann. For. Sci.
Volume 63, Number 8, December 2006
Page(s) 833 - 842
DOI https://doi.org/10.1051/forest:2006066
Published online 09 December 2006
References of  Ann. For. Sci. 63 (2006) 833-842
  1. Abrams M.D., Kubiske M.E., Steiner K.C., Drought adaptations and responses in five genotypes of Fraxinus pennsylvanica Marsh.: photosynthesis, water relations and leaf morphology, Tree Physiol. 6 (1990) 305-315 [PubMed].
  2. Abrams M.D., Schultz J.C., Kleiner K.W., Ecophysiological responses in mesic versus xeric hardwood species to an early-season drought in central Pennsylvania, For. Sci. 36 (1990) 970-981.
  3. Bauerle W.L., Hinckley T.M., Cermák J., Kucera J., Bible K., The canopy water relations of old-growth Douglas-fir trees, Trees 13 (1999) 211-217 [CrossRef].
  4. Bauerle W.L., Inman W.W., Dudley J.B., Leaf abscisic acid accumulation in response to substrate water content: Linking leaf gas exchange regulation with leaf abscisic acid concentration, J. Am. Soc. Hortic. Sci. 131 (2006) 295-301.
  5. Bauerle W.L., Whitlow T.H., Setter T.L., Bauerle T.L., Vermeylen F.M., Ecophysiology of Acer rubrum L. seedlings from contrasting hydrologic habitats: growth, gas exchange, tissue water relations, abscisic acid, and carbon isotope discrimination, Tree Physiol. 23 (2003) 841-850 [PubMed].
  6. Bauerle W.L., Weston D.J., Bowden J.D., Dudley J.B., Toler J.E., Leaf absorptance of photosynthetically active radiation in relation to chlorophyll meter estimates among woody plant species, Sci. Hortic. 101 (2004) 169-178 [CrossRef].
  7. Bauerle W.L., Whitlow T.H., Setter T.L., Vermeylen F.M., Abscisic acid synthesis in Acer rubrum L. leaves - A vapor-pressure-deficit-mediated response, J. Am. Soc. Hortic. Sci. 129 (2004) 182-187.
  8. Brooks A.B., Castanea dentata, Castanea 51 (1937) 239-244.
  9. Buttrick P.L., Holmes J.S., Preliminary report on the chestnut in North Carolina made in connection with a cooperative investigation if the chestnut bark disease, North Carolina Geological and Economic Survey, Raleigh, NC, 1913.
  10. Costa E Silva F., Shvaleva A., Maroco J.P., Almeida M.H., Chaves M.M., Pereira J.S., Response to water stress in two Eucalyptus globulus clones differing in drought tolerance, Tree Physiol. 24 (2004) 1165-1172 [PubMed].
  11. Farquhar G., von Caemmerer S., Modelling of photosynthetic response to environmental conditions, in: Encyclopedia of Plant Physiology, II, Lange O.L., Nobel P.S., Osmond C.B., Ziegler H., (Eds.), Physiological Plant Ecology, Springer-Verlag, Berlin (1982) 549-588.
  12. Farquhar G.D., von Caemmerer S., Berry J.A., A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta 149 (1980) 78-90 [CrossRef].
  13. Fulton A., Bucher R., Olson B., Schwankl L., Gilles C., Bertagna N., Walton J., Shackel K., Rapid equilibration of leaf and stem water potential under field conditions in almonds, walnuts, and prunes, HortTechnology 11 (2001) 609-615.
  14. Gregory J.M., Mitchell J.F.B., Brady A.J., Summer drought in northern midlatitudes in a time-dependent CO2 climate experiment, J. Clim. 10 (1997) 662-686 [CrossRef].
  15. Griffin G.J., Clay Smith H., Dietz A., Elkins J.R., Importance if hardwood competition to American chestnut survival, growth, and blight development in forest clearcuts, Can. J. Bot. 69 (1991) 1804-1809.
  16. Griffin G.J., American chestnut survival in under story mesic sites following the chestnut blight pandemic, Can. J. Bot. 70 (1992) 1950-1956.
  17. Harley P.C., Sharkey T.D., An improved model of C3 photosynthesis at high CO2: Reversed O2 sensitivity explained by lack of glycerate re-entry into the chloroplast, Photosynth. Res. 27 (1991) 169-178.
  18. Harley P.C., Thomas R.B., Reynolds J.F., Strain B.R., Modelling photosynthesis of cotton grown in elevated CO2, Plant Cell Environ. 15 (1992) 271-282.
  19. Hoerling M., Kumar A., The perfect ocean for drought, Science 299 (2003) 691-694 [CrossRef].
  20. Huang H., Dane F., Kubisiak T., Allozyme and RAPD analysis of the genetic diversity and geographic variation in wild populations of the American chestnut (Fagaceae), Amer. J. Bot. 85 (1998) 1013-1021.
  21. Jacobs D.F., Severeid L.R., Dominance of interplanted American chestnut (Castanea dentata) in southwestern Wisconsin, USA, For. Ecol. Manage. 191 (2003) 111-120 [CrossRef].
  22. Keever C., Present composition of some stands of the former oak-chestnut forest in the southern Blue Ridge Mountains, Ecology 34 (1953) 44-55.
  23. Kirschbaum M.U.F., Farquhar G.D., Temperature dependence of whole-leaf photosynthesis in Eucalyptus pauciflora Sieb. ex Spreng, Aust. J. Plant Physiol. 11 (1984) 519-538.
  24. Kozlowski T.T., Pallardy S.G., Physiology of Woody Plants, 2nd ed., Academic Press, San Diego, 1997, pp. 411.
  25. Kramer P.J., Boyer J.S., Water relations of plants, Academic Press, New York, 1995, 495 p.
  26. Latham R.E., Co-occurring tree species change rank in seedling performance with resources varied experimentally, Ecology 73 (1992) 2129-2144.
  27. Nagakura J., Shigenaga H., Akama A., Takahashi M., Growth and transpiration of Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) seedlings in response to soil water content, Tree Physiol. 24 (2004) 1203-1208 [PubMed].
  28. Ngugi M.R., Hunt M.A., Doley D., Ryan P., Dart P.J., Effects of soil water availability on water use efficiency of Eucalyptus cloeziana and Eucalyptus argophloia plants, Aust. J. Bot. 51 (2003) 159-166 [CrossRef].
  29. Ni B.-R., Pallardy S.G., Response of gas exchange to water stress in seedlings of woody angiosperms, Tree Physiol. 8 (1991) 1-9 [PubMed].
  30. Olsson T., Leverenz J.W., Non-uniform stomatal closure and the apparent convexity of the photosynthetic photon flux density response curve, Plant Cell Environ. 17 (1994) 701-710.
  31. Oren R., Sperry J.S., Katul G.G., Pataki D.E., Ewers B.E., Phillips N., Schäfer K.V.R., Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit, Plant Cell Environ. 22 (1999) 1515-1526 [CrossRef].
  32. Paillet F.L., Chestnut: history and ecology of a transformed species, J. Biogeogr. 29 (2002) 1517-1530 [CrossRef].
  33. Parsons R., Weyers J.D.B., Lawson T., Godber I.M., Rapid and straightforward estimates of photosynthetic characteristics using a portable gas exchange system, Photosynthetica, 34 (1997) 265-279.
  34. Reed F.W., Examination of a forest tract in western North Carolina, USDA For. Serv. Bull. 60 (1905) 29 p.
  35. Shackel K., Fulton A., Buchner R., Olsen B., Schwankl L., Gilles C., Bertagna N., Walton J., Rapid equilibration of leaf and stem water potential under field conditions, HortSci. 36 (2001) 430.
  36. Sharkey T.D., Photosynthesis of intact leaves of C3 plants: physics, physiology and rate limitations, Bot. Rev. 51 (1985) 53-105.
  37. Smit J., van den Driessche R., Root growth and water use efficiency of Douglas-fir (Pseudotsuga menziensii (Mirb.) Franco) and lodgepole pine (Pinus contorta Dougl.) seedlings, Tree Physiol. 11 (1992) 401-410 [PubMed].
  38. Walther G.-R., Post E., Convey P., Menzel A., Parmesan C., Beebee T.J.C., Fromentin J.-C., Hoegh-Guldberg O., Beirlein F., Ecological responses to recent climate change, Nature 416 (2002) 389-395 [CrossRef] [PubMed].
  39. Warren C.R., Livingston N.J., Turpin D.H., Water stress decreases the transfer conductance of Douglas-fir (Pseudotsuga menziesii) seedlings, Tree Physiol. 24 (2004) 971-979 [PubMed].
  40. Wullschleger S.D., Biochemical limitations to carbon assimilation in C3 plants - A retrospective analysis of the A/C$_{\rm i}$ curves from 109 species, J. Exp. Bot. 44 (1993) 907-920.
  41. Zon R., Chestnut in Southern Maryland, US Department of Agriculture, Bureau of Forestry, USA, Bull. No. 53, 1904.