Free Access
Issue
Ann. For. Sci.
Volume 63, Number 8, December 2006
Page(s) 929 - 940
DOI https://doi.org/10.1051/forest:2006076
Published online 09 December 2006
References of  Ann. For. Sci. 63 (2006) 929-940
  1. Álvarez González J.G., Ruíz González A.D., Rodríguez Soalleiro R., Barrio Anta M., Ecoregional site index models for Pinus pinaster in Galicia (northwestern Spain), Ann. For. Sci. 62 (2005) 115-127 [EDP Sciences] [CrossRef].
  2. Amaro A., Reed D., Tomé M., Themido I., Modeling dominant height growth: eucalyptus plantations in Portugal, For. Sci. 44 (1998) 37-46.
  3. Amateis R.L., Burkhart H.E., Site index curves for loblolly pine plantations on cutover-site prepared lands, South. J. Appl. For. 9 (1985) 166-169.
  4. Bailey R.L., The potential of Weibull-type functions as flexible growth curves: Discussion, Can. J. For. Res. 10 (1980) 117-118.
  5. Bailey R.L., Cieszewzki C.J., Development of a well-behaved site-index equation: jack pine in north-central Ontario: comment, Can. J. For. Res. 30 (2000) 1667-1668 [CrossRef].
  6. Bailey R.L., Clutter J.L., Base-age invariant polymorphic site curve, For. Sci. 20 (1974) 155-159.
  7. Bengoa Martínez de Mandojana J.L., Análisis de un modelo de crecimiento en altura de masas forestales. Aplicación a la masas de Quercus pyrenaica de La Rioja, Universidad Politécnica de Madrid, Madrid, 1999, 317 p.
  8. Borders B.E., Bailey R.L., Clutter M.L., Forest Growth models: parameter estimation using real growth series, in: The IUFRO Forest Growth Modeling and Predicition Conference, Minneapolis, MN, 1988, pp. 660-667.
  9. Calama R., Cañadas N., Montero G., Inter-regional variability in site index models for even-aged stands of stone pine (Pinus pinea L.) in Spain, Ann. For. Sci. 60 (2003) 259-269 [EDP Sciences] [CrossRef].
  10. Cañellas I., Del Río M., Roig S., Montero G., Growth response to thinning in Quercus pyrenaica Willd. coppice stands in Spanish central mountain, Ann. For. Sci. 61 (2004) 243-250 [EDP Sciences] [CrossRef].
  11. Carmean W.H., Site index curves for upland oaks in the Central States, For. Sci. 18 (1972) 109-120.
  12. Carvalho J.P., dos Santos J.S., Reimao D., Gallardo J.F., Alves P.C., Grosso-Silva J.M., dos Santos T.M., Pinto M.A., Marques G., Martins L.M., Carvalheira M., Santos J., O Carvalho Negral, Programa AGRO, Medida 8.1., Vila Real, 2005.
  13. Carvalho J.P., Parresol B.R., A site model for Pyrenean oak (Quercus pyrenaica) stands using a dynamic algebraic difference equation, Can. J. For. Res. 35 (2005) 93-99 [CrossRef].
  14. Ceballos L., Ruiz de la Torre J., Arboles y arbustos, Sección de Publicaciones de la Escuela Técnica Superior de Ingenieros de Montes, Madrid, 1979.
  15. Cieszewski C.J., Comparing fixed- and variable-base-age site equations having single versus multiple asymptotes, For. Sci. 48 (2002) 7-23.
  16. Cieszewski C.J., GADA derivation of dynamic site equations with polymorphism and variable asymptotes form Richards, Weibull, and other exponential functions, PMRC Tecnical Report 2004-5, Daniel B. Warnell School of Forest Resources, University of Georgia, 2004, 16 p.
  17. Cieszewski C.J., Bailey R.L., Generalized algebraic difference approach: theory based derivation of dynamic equations with polymorphism and variable asymptotes, For. Sci. 46 (2000) 116-126.
  18. Cieszewski C.J., Bella I.E., Polymorfic height and site index curves for lodgepole pine in Alberta, Can. J. For. Res. 19 (1989) 1151-1160.
  19. Clutter J.L., Forston J.C., Piennar L.V., Brister G.H., Bailey L., Timber Management - A Quantitative Approach, Wiley, New York, 1983.
  20. Clutter J.L., Lenhart D.J.D., Site index curves for old-field loblolly pine plantations in Georgia Piedmont, Ga. For. Res. Counc. Rep. 22 (1968).
  21. Costa M., Morla C., Sainz H., Los Bosques Ibéricos. Una interpretación geobotánica, Ed. Planeta, 1996.
  22. Chen H.Y.H., Krestov P.V., Klinka K., Trembling aspen site index in relation to environmental measures of site quality at two spatial scales, Can. J. For. Res. 32 (2002) 112-119 [CrossRef].
  23. DGCN, II Inventario Forestal Nacional, Ministerio de Medio Ambiente, Madrid, 1986-1996.
  24. Duplat P., Tran-Ha M., Modélisation de la croissance en hauteur dominante du chêne sessile (Quercus petraea Liebl.) en France. Variabilité inter-régionale et effet de la période récente (1959-1993), Ann. Sci. For. 54 (1997) 611-634.
  25. Elena Roselló R., Clasificación biogeoclimática de España Peninsular y Balear, MAPA, Madrid, 1997.
  26. Elfving B., Kiviste A., Construction of site index equations for Pinus sylvestris L. using permanent plot data in Sweden, For. Ecol. Manage. 98 (1997) 125-134 [CrossRef].
  27. Fang Z., Bailey R.L., Height-diameter models for tropical forest on Hainan Island in southern China, For. Ecol. Manage. 110 (1998) 315-327 [CrossRef].
  28. Furnival G.M., Gregoire T.G., Valentine H.T., An analysis of three methods for fitting site-index curves, For. Sci. 36 (1990) 464-469.
  29. Goelz J.C.G., Burk T.E., Development of a well-behaved site index equations: jack pine in north central Ontario, Can. J. For. Res. 22 (1992) 776-784.
  30. Huang S., Development of compatible height and site index models for young and mature stands within an ecosystem-based management framework, in: Empirical and process based models for forest tree and stand growth simulation, Oeiras, Portugal, 1997, pp. 61-98.
  31. Huang S., Price D., Titus S.J., Development of ecoregion-based height-diameter models for white spruce in boreal forests, For. Ecol. Manage. 129 (2000) 125-141 [CrossRef].
  32. Inc S.I., SAS/STAT user's guide, version 8, SAS Institute Inc., Cary, NC, 2000.
  33. Khattree R., Naik D.N., Applied multivariate statistics with SAS software, SAS Institute Inc., Cary, NC, 1995.
  34. Korf V., A mathematical definition of stand volume growth law, Lesnicka Prace 18 (1939) 337-339.
  35. McDill M.E., Amateis R.L., Measuring forest site quality using the parameters of a dimensionally compatible height growth function, For. Sci. 38 (1992) 409-429.
  36. Medawar P.B., Growth, growth energy, and ageing of the chicken's heart, Proc. Roy. Soc. B. 129 (1984) 332-355.
  37. Monserud R.A., Height growth and site index curves for inland Douglas-fir based on stem analysis data and forest habitat type, For. Sci. 30 (1984) 943-965.
  38. Newberry J.D., A note on Carmean's estimate of height from stem analysis data, For. Sci. 37 (1991) 368-369.
  39. Palahí M., Tomé M., Pukkala T., Trasobares A., Montero G., Site index model for Pinus sylvestris in north-east Spain, For. Ecol. Manage. 187 (2004) 35-47 [CrossRef].
  40. Peschel W., Die mathematischen Methoden zur Herteitung der Wachstums-gesetze von Baum und Bestand und die Ergebnisse ihrer Anwendung, Thatandter Forstl. Jarb. 89 (1938) 169-274.
  41. Richards F.J., A flexible growth function for empirical use, J. Exp. Bot. 10 (1959) 290-300.
  42. Robertson T.B., The chemical basis of growth and senescence, Philadelphia and London, 1923.
  43. Sánchez-González M., Tomé M., Montero G., Modelling height and diameter growth of dominant cork oak trees in Spain, Ann. For. Sci. 62 (2005) 633-643 [EDP Sciences] [CrossRef].
  44. Schumacher F.X., A new growth curve and its application to timber yield studies, J. For. 37 (1939) 819-820.
  45. Sloboda B., Zur Darstelling von Wachstumprozessen mit Hilfe von Differentialgleichungen erster Ordung, Mitteillungen der Badenwürten-bergische Forstlichten Versuchs und Forschungs-anstalt, 1971.
  46. Strub M., Base-age invariance properties of two techniques for estimating the parameters of the site models, For. Sci. (in press).
  47. Sturtevant B.R., Seagle S.W., Comparing estimates of forest site quality in old second-growth oak forests, For. Ecol. Manage. 191 (2004) 311-328 [CrossRef].
  48. Torre Antón M., Degradación inducida por algunas prácticas agrarias tradicionales. El caso de los rebollares (Quercus pyrenaica Willd.) de la provincia de León, Universidad Politécnica de Madrid, Madrid, 1994, 246 p.
  49. Wang G.G., Klinka K., Use of sypnoptic variables in predicting white spruce site index, For. Ecol. Manage. 80 (1996) 95-105 [CrossRef].
  50. Weibull W., A statistical theory of the strength of material, Handl, 1939.
  51. Yang R.C., Kozac A., Smith J.H.G., The potential of Weibull-type functions as flexible growth curves, Can. J. For. Res. 8 (1978) 424-431.
  52. Zimmerman L., Núñez-Anton V., Parametric modelling of growth curve data: An overview, Soc. Estad. Invest. Oper. 10 (2001) 1-73.