Free Access
Issue
Ann. For. Sci.
Volume 63, Number 8, December 2006
Page(s) 813 - 821
DOI https://doi.org/10.1051/forest:2006080
Published online 09 December 2006
References of  Ann. For. Sci. 63 (2006) 813-821
  1. Apiolaza L.A., Raymond C.A., Yeo B.J., Genetic variation of physical and chemical wood properties of Eucalyptus globulus, Silvae Genet. 54 (2005) 160-166.
  2. Appita Standard, Klason lignin in wood and pulp, Australian Pulp and Paper Industry Technical Association, Appita Standard P11s, 1978.
  3. Appita Standard, Organic solvent extractives in wood, pulp and paper, Australian Pulp and Paper Industry Technical Association, Appita Standard 1301.012s, 1994.
  4. Baillères H., Davrieus F., Pichavant F.H., Near infrared analysis as a tool for rapid screening of some major wood characteristics in a eucalyptus breeding program, Ann. For. Sci. 59 (2002) 479-490 [EDP Sciences] [CrossRef].
  5. Barry K.M., Pearce R.B., Evans S.D., Hall L.D., Mohammed C.M., Initial defence responses in sapwood of Eucalyptus nitens (Maiden) following wounding and fungal inoculation, Physiol. Mol. Plant Pathol. 58 (2001) 63-72 [CrossRef].
  6. Barry K.M., Pearce R.B., Mohammed C.L., Properties of reaction zones associated with decay from pruning wounds in plantation-grown Eucalyptus nitens, For. Pathol. 30 (2000) 233-245.
  7. Bootle K.R., Wood in Australia: types, properties, uses, McGraw-Hill, Sydney, 1983.
  8. Cotterill P.P., Brolin A., Improving Eucalyptus wood, pulp and paper quality by genetic selection, in: Proceedings of the IUFRO Conference on Silviculture and Improvement of Eucalypts, Salvador, Brazil, August 24-29, 1997, pp. 1-13.
  9. Dutkowski G.W., Gilmour A.R., Borralho N.M.G., Modification of the additive relationship matrix for open pollinated trials, in: IUFRO International Symposium on Developing the Eucalypt of the Future, Valdivia, Chile, September 10-15 2001.
  10. Dutkowski G.W., Potts B.M., Geographic patterns of genetic variation in Eucalyptus globulus ssp. globulus and a revised racial classification, Aust. J. Bot. 47 (1999) 237-263 [CrossRef].
  11. Evans R., Hughes M., Menz D., Microfibril angle variation by scanning X-ray diffractometry, Appita J. 52 (1999) 363-367.
  12. Gardiner C.A., Crawford D.F., Seed collections of Eucalyptus globulus subsp. globulus for tree improvement purposes, CSIRO Division of Forest Research, Canberra, 1987.
  13. Gardiner C.A., Crawford D.F., Seed collections of Eucalyptus globulus subsp. globulus Labill. for tree improvement purposes, CSIRO Division of Forestry and Forest Products, Canberra, 1988.
  14. Gilmour A.R., Cullis B.R., Welham S.J., Thompson R., ASREML computer software, NSW Agriculture, Orange, 1999.
  15. Gominho J., Rodrigues J., Almeida M.H., Leal A., Cotterill P.P., Pereira H., Assessment of pulp yield and lignin content in a first-generation clonal testing of Eucalyptus globulus in Portugal, in: Proceedings of the IUFRO Conference on Silviculture and Improvement of Eucalypts, Salvador, Brazil, August 24-29, 1997, pp. 84-89.
  16. Greaves B.L., Borralho N.M.G., The influence of basic density and pulp yield on the cost of eucalypt kraft pulping: a theoretical model for tree breeding, Appita J. 49 (1996) 90-93.
  17. Greaves B.L., Borralho N.M.G., Raymond C.A., Breeding objective for plantation eucalypts grown for production of kraft pulp, For. Sci. 43 (1997) 465-472.
  18. Hawkins S., Boudet A., "Defence lignin" and hydroxycinnamyl alcohol dehydrogenase activities in wounded Eucalyptus gunnii, For. Pathol. 33 (2003) 91-104.
  19. Johnson G.R., Burdon R.D., Family-site interaction in Pinus radiata: Implications for progeny testing strategy and regionalised breeding in New Zealand, Silvae Genet. 39 (1990) 55-62.
  20. Kube P.D., Genetic improvement of the wood properties of Eucalyptus nitens: Breeding to improve solid wood and pulp properties, Ph.D. thesis, University of Tasmania, Hobart, Australia, 2004.
  21. Kube P.D., Raymond C.A., Genetic parameters for Eucalyptus nitens solid wood traits and relationships with pulpwood traits, in: IUFRO International Symposium on Developing the Eucalypt of the Future, Valdivia, Chile, September 10-15, 2001.
  22. Lopez G.A., Potts B.M., Dutkowski G.W., Apiolaza L.A., Gelid P.E., Genetic variation and inter-trait correlations in Eucalyptus globulus base population trials in Argentina, For. Genet. 9 (2002) 217-231.
  23. Miranda I., Pereira H., Provenance effect on wood chemical composition and pulp yield for Eucalyptus globulus Labill, Appita J. 54 (2001) 347-351.
  24. Miranda I., Pereira H., Variation of pulpwood quality with provenances and site in Eucalyptus globulus, Ann. For. Sci. 59 (2002) 283-291 [EDP Sciences] [CrossRef].
  25. Mohammed C., Barry K., Battaglia M., Beadle C., Eyles A., Mollon A., Pinkard E., Pruning-associated stem defects in plantation E. nitens and E. globulus grown for sawlog and veneer in Tasmania, Australia, in: The future of eucalypts for wood production, Launceston, Tasmania, Australia, March 19-24, 2000, pp. 357-364.
  26. Muneri A., Raymond C.A., Genetic parameters and genotype-by-environment interactions for basic density, pilodyn penetration and stem diameter in Eucalyptus globulus, For. Genet. 7 (2000) 317-328.
  27. Nelson N.D., Heather W.A., Wood color, basic density, and decay resistance in heartwood of fast-grown Eucalyptus grandis Hill ex. Maiden, Holzforschung 26 (1972) 54-60.
  28. Ona T., Sonoda T., Ito K., Shibata M., Relations between various extracted basic densities and wood chemical components in Eucalyptus globulus, J. Wood Sci. 44 (1998) 165-168 [CrossRef].
  29. Pearce R.B., Tansley review No. 87. Antimicrobial defences in the wood of living trees, New Phytol. 132 (1996) 203-233.
  30. Poke F.S., Wright J.K., Raymond C.A., Predicting extractives and lignin contents in Eucalyptus globulus using near infrared reflectance analysis, J. Wood Chem. Technol. 24 (2004) 55-67 [CrossRef].
  31. Pot D., Chantre G., Rozenberg P., Rodrigues J.C., Jones G.L., Pereira H., Hannrup B., Cahalan C., Plomion C., Genetic control of pulp and timber properties in maritime pine (Pinus pinaster Ait.), Ann. For. Sci. 59 (2002) 563-575 [EDP Sciences] [CrossRef].
  32. Potts B.M., Dutkowski G.W., Jordan G.J., Vaillancourt R.E., Providing a population genetic framework for exploitation of eucalypt genetic resources: The case of Eucalyptus globulus, in: Proceedings of the Australian Plant Breeding Conference, Adelaide, South Australia, April 19-23 1999, pp. 97-101.
  33. Raymond C.A., Schimleck L.R., Muneri A., Michell A.J., Nondestructive sampling of Eucalyptus globulus and E. nitens for wood properties. III. Predicted pulp yield using near infrared reflectance analysis, Wood Sci. Technol. 35 (2001) 203-215 [CrossRef].
  34. Saka S., The relationship between the microfibril orientation in the tracheid S2 layer and lignin content of coniferous woods, in: Sudo S. (Ed.) Proceedings of the Pacific Regional Wood Anatomy Conference, Tsukuba, Ibaraki, Japan, October 1-7, 1984, pp. 100-102.
  35. Smook G., Handbook for pulp and paper technologists, Angus Wilde Publications, Vancouver, BC, 1992.
  36. Southam C.M., Ehrlich J., Decay resistance and physical characteristics of wood, J. For. 41 (1943) 666-673.
  37. TAPPI, Basic density and moisture content of pulpwood, TAPPI No. T258 om-98, 1989.
  38. Walker J.C.F., Butterfield B.G., The importance of microfibril angle for the processing industries, N.Z. For. 40 (1995) 34-40.
  39. Wallis A.F.A., Wearne R.H., Wright P.J., Analytical characteristics of plantation eucalypt woods relating to kraft pulp yields, Appita J. 49 (1996) 427-432.
  40. Wardlaw T., Mohammed C., Barry K., Eyles A., Wiseman D., Beadle C., Battaglia M., Pinkard L., Kube P., Interdisciplinary approach to the study and management of stem defect in eucalypts, N.Z. J. For. Sci. 33 (2003) 385-398.
  41. Washusen R., Ades P., Evans R., Ilic J., Vinden P., Relationships between density, shrinkage, extractives content and microfibril angle in tension wood from three provenances of 10-year-old Eucalyptus globulus Labill., Holzforschung 55 (2001) 176-182 [CrossRef].
  42. White D.A., Raymond C.A., Kile G.A., Hall M.F., Are there genetic differences in susceptibility of Eucalyptus nitens and E. regnans stems to defect and decay? Aust. For. 62 (1999) 368-374.
  43. Wong A.H.H., Wilkes J., Heather W.A., Influence of wood density and extractives content on the decay resistance of the heartwood of Eucalyptus delegatensis R.T. Baker, J. Inst. Wood Sci. 9 (1983) 261-263.