Free Access
Ann. For. Sci.
Volume 64, Number 4, June-July 2007
Page(s) 453 - 465
Published online 24 May 2007
References of  Ann. For. Sci. 64 (2007) 453-465
  1. Álvarez Álvarez P., Viveros forestales y uso de planta en repoblación en Galicia, Ph.D. thesis, Universidade de Santiago de Compostela, 2004.
  2. Álvarez González J.G., Ruiz A., Análisis y modelización de las distribuciones diamétricas de Pinus pinaster Ait. en Galicia, Investig. Agrar. Sist. Recur. For. 7 (1998) 123-137.
  3. Álvarez González J.G., Castedo F., Ruiz A.D., López Sánchez C.A., Gadow K.v., A two-step mortality model for even-aged stands of Pinus radiata D. Don in Galicia (north-western Spain), Ann. For. Sci. 61 (2004) 439-448 [EDP Sciences] [CrossRef].
  4. Amateis R.L., Radtke P.J., Burkhart H.E., TAUYIELD: A stand-level growth and yield model for thinned and unthinned loblolly pine plantations, Va. Polytech. Inst. State Univ. Sch. For. Wildl. Resour. Report No. 82, 1995.
  5. Avila O.B., Burkhart H.E., Modeling survival of loblolly pine trees in thinned and unthinned plantations, Can. J. For. Res. 22 (1992) 1878-1882.
  6. Bailey R.L., Clutter J.L., Base-age invariant polymorphic site curves, For. Sci. 20 (1974) 155-159.
  7. Bailey R.L., Dell T.R., Quantifying diameter distributions with the Weibull function, For. Sci. 19 (1973) 97-104.
  8. Barrrio M., Castedo F., Diéguez-Aranda U., Álvarez J.G., Parresol B.R., Rodríguez R., Development of a basal area growth system for maritime pine in northwestern Spain using the generalized algebraic difference approach, Can. J. For. Res. 36 (2006) 1461-1474 [CrossRef].
  9. Battaglia M., Sands P.J., Process-based forest productivity models and their application in forest management, For. Ecol. Manage. 102 (1998) 13-32 [CrossRef].
  10. Bertalanffy L.v., Problems of organic growth, Nature 163 (1949) 156-158.
  11. Bertalanffy L.v., Quantitative laws in metabolism and growth, Q. Rev. Biol. 32 (1957) 217-231 [PubMed].
  12. Borders B.E., Patterson W.D., Projecting stand tables: a comparison of the Weibull diameter distribution method, a percentile-based projection method and a basal area growth projection method, For. Sci. 36 (1990) 413-424.
  13. Bravo-Oviedo A., Río M. Del., Montero G., Site index curves and growth model for Mediterranean maritime pine (Pinus pinaster Ait.) in Spain, For. Ecol. Manage. 201 (2004) 187-197 [CrossRef].
  14. Burk T.E., Burkhart H.E., Diameter distributions and yields of natural stands of loblolly pine, School of Forestry and Wildlife Resources, VPI and SU, Publication No. FSW-1-84, 1984.
  15. Burk T.E., Newberry J.D., A simple algorithm for moment-based recovery of Weibull distribution parameters, For. Sci. 30 (1984) 329-332.
  16. Burkhart H.E., Cubic-foot volume of loblolly pine to any merchantable top limit, South. J. Appl. For. 1 (1977) 7-9.
  17. Burkhart H.E., Suggestions for choosing an appropriate level for modelling forest stands, in: Amaro A., Reed D., Soares P. (Eds.), Modelling Forest Systems, CAB International, Wallingford, Oxfordshire, UK, 2003, pp. 3-10.
  18. Cao Q.V., Predicting parameters of a Weibull function for modelling diameter distributions, For. Sci. 50 (2004) 682-685.
  19. Cao Q.V., Burkhart H.E., A segmented distribution approach for modeling diameter frequency data, For. Sci. 30 (1984) 129-137.
  20. Cao Q.V., Burkhart H.E., Lemin R.C., Diameter distributions and yields of thinned loblolly pine plantations, School of Forestry and Wildlife Resources, VPI and SU, Publication No. FSW-1-82, 1982.
  21. Carmean W.H., Site index curves for upland oaks in the central states, For. Sci. 18 (1972) 109-120.
  22. Castedo F., Modelo dinámico de crecimiento para las masas de Pinus radiata D. Don en Galicia. Simulación de alternativas selvícolas con inclusión del riesgo de incendio, Ph.D. thesis, Universidad de Santiago de Compostela, 2004.
  23. Castedo F., Diéguez-Aranda U., Barrio M., Sánchez M., Gadow K.v., A generalized height-diameter model including random components for radiata pine plantations in northwestern Spain, For. Ecol. Manage. 229 (2006) 202-213 [CrossRef].
  24. Cieszewski C.J., Three methods of deriving advanced dynamic site equations demonstrated on inland Douglas-fir site curves, Can. J. For. Res. 31 (2001) 165-173 [CrossRef].
  25. Cieszewski C.J., Comparing fixed- and variable-base-age site equations having single versus multiple asymptotes, For. Sci. 48 (2002) 7-23.
  26. Cieszewski C.J., Developing a well-behaved dynamic site equation using a modified Hossfeld IV function Y3 = (axm)/(c+xm-1), a simplified mixed-model and scant subalpine fir data, For. Sci. 49 (2003) 539-554.
  27. Cieszewski C.J., GADA derivation of dynamic site equations with polymorphism and variable asymptotes from Richards, Weibull, and other exponential functions, University of Georgia PMRC-TR 2004-5, 2004.
  28. Cieszewski C.J., Bailey R.L., Generalized algebraic difference approach: Theory based derivation of dynamic site equations with polymorphism and variable asymptotes, For. Sci. 46 (2000) 116-126.
  29. Cieszewski C.J., Harrison M., Martin S.W., Practical methods for estimating non-biased parameters in self-referencing growth and yield models, University of Georgia PMRC-TR 2000-7, 2000.
  30. Clutter J.L., Development of taper functions from variable-top merchantable volume equations, For. Sci. 26 (1980) 117-120.
  31. Clutter J.L., Fortson J.C., Pienaar L.V., Brister H.G., Bailey R.L., Timber management: A quantitative approach, John Wiley and Sons Inc., New York, 1983.
  32. Clutter J.L., Harms W.R., Brister G.H., Rheney J.W., Stand structure and yields of site-prepared loblolly pine plantations in the Lower Coastal Plain of the Carolinas, Georgia and north Florida, USDA Forest Service, Gen. Tech. Rep. SE-27, 1984.
  33. Corral, J.J., Diéguez-Aranda U., Corral S., Castedo F., A merchantable volume system for major pine species in El Salto, Durango (Mexico), For. Ecol. Manage. 238 (2007) 118-129 [CrossRef].
  34. Curtis R.O., Height-diameter and height-diameter-age equations for second growth Douglas-fir, For. Sci. 13 (1967) 365-375.
  35. Curtis R.O., DeMars D.J., Herman F.R., Which dependent variables in site index-height-age regressions? For. Sci. 20 (1974) 74-87.
  36. Davis L.S., Johnson K.N., Bettinger P.S., Howard T.E., Forest management: To sustain ecological, economic, and social values, McGraw-Hill, New York, 2001.
  37. Demaerschalk J., Converting volume equations to compatible taper equations, For. Sci. 18 (1972) 241-245.
  38. Diéguez-Aranda U. Modelo dinámico de crecimiento para masas de Pinus sylvestris L. procedentes de repoblación en Galicia, Ph.D. thesis, Universidad de Santiago de Compostela, 2004.
  39. Diéguez-Aranda U., Burkhart H.E., Rodríguez R. Modelling dominant height growth of radiata pine (Pinus radiata D. Don) plantations in northwest of Spain, For. Ecol. Manage. 215 (2005) 271-284 [CrossRef].
  40. Diéguez-Aranda U., Castedo F., Álvarez J.G., Rojo A., Dynamic growth model for Scots pine (Pinus sylvestris L.) plantations in Galicia (north-western Spain), Ecol. Model. 191 (2006) 225-242 [CrossRef].
  41. Diéguez-Aranda U., Castedo F., Álvarez J.G., Rojo A., Compatible taper function for Scots pine (Pinus sylvestris L.) plantations in north-western Spain, Can. J. For. Res. 36 (2006) 1190-1205 [CrossRef].
  42. Falcao A.O., Borges J.G., Designing decision support tools for Mediterranean forest ecosystems management: a case study in Portugal, Ann. For. Sci. 62 (2005) 751-760 [EDP Sciences] [CrossRef].
  43. Fang Z., Borders B.E., Bailey R.L., Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors, For. Sci. 46 (2000) 1-12.
  44. Frazier J.R., Compatible whole-stand and diameter distribution models for loblolly pine, Unpublished Ph.D. thesis, VPI and SU, 1981.
  45. Freese F., Testing accuracy, For. Sci. 6 (1960) 139-145.
  46. Gadow K.v., Modelling growth in managed forests - realism and limits of lumping, Sci. Total Environ. 183 (1996) 167-177 [CrossRef].
  47. Gadow K.v., Hui, G.Y., Modelling forest development, Kluwer Academic Publishers, Dordrecht, 1999.
  48. García O., Growth modelling - a (re)view, N. Z. For. 33 (1988) 14-17.
  49. García O., Growth of thinned and pruned stands, in: James R.Ñ., Tarlton G.L. (Eds.), Proceedings of a IUFRO Symposium on New Approaches to Spacing and Thinning in Plantation Forestry. Rotorua, New Zealand, Ministry of Forestry, FRI Bulletin No. 151, 1990, pp. 84-97.
  50. García O., The state-space approach in growth modelling, Can. J. For. Res. 24 (1994) 1894-1903.
  51. García O., Dimensionality reduction in growth models: an example, Forest biometry, Modelling and Information Sciences 1 (2003) 1-15.
  52. García O., Ruiz F., A growth model for eucalypt in Galicia, Spain, For. Ecol. Manage. 173 (2003) 49-62 [CrossRef].
  53. Hein S., Dhote J.F., Effect of species composition, stand density and site index on the basal area increment of oak trees (Quercus sp.) in mixed stands with beech (Fagus sylvatica L.) in Northern France, Ann. For. Sci. 63 (2006) 457-467 [EDP Sciences] [CrossRef].
  54. Hossfeld J.W., Mathematik für Forstmänner, Ökonomen und Cameralisten (Gotha, 4. Bd., S. 310), 1882.
  55. Huang S., Yang Y., Wang Y., A critical look at procedures for validating growth and yield models, in: Amaro A., Reed D., Soares P. (Eds.), Modelling Forest Systems, CAB International, Wallingford, Oxfordshire, UK, 2003, pp. 271-293.
  56. Hyink D.M., Diameter distribution approaches to growth and yield modelling, in: Brown K.M., Clarke F.R. (Eds.), Forecasting forest stand dynamics, School of Forestry, Lakehead University, 1980, pp. 138-163.
  57. Hyink D.M., Moser J.W., A generalized framework for projecting forest yield and stand structure using diameter distributions, For. Sci. 29 (1983) 85-95.
  58. Kangas A., Maltamo M., Calibrating predicted diameter distribution with additional information, For. Sci. 46 (2000) 390-396.
  59. Knoebel B.R., Burkhart H.E., Beck D.E., A growth and yield model for thinned stands of yellow-poplar, For. Sci. Monogr. 27, 1986.
  60. Kotze H., A strategy for growth and yield research in pine and eucalipt plantations in Komatiland Forests in South Africa, in: Amaro A., Reed D., Soares P. (Eds.), Modelling Forest Systems, CAB International, Wallingford, Oxfordshire, UK, 2003, pp. 75-84.
  61. Kozak A., Effects of multicollinearity and autocorrelation on the variable-exponent taper functions, Can. J. For. Res. 27 (1997) 619-629 [CrossRef].
  62. Kozak A., My last words on taper functions, For. Chron. 80 (2004) 507-515.
  63. Kozak A., Kozak R., Does cross validation provide additional information in the evaluation of regression models? Can. J. For. Res. 33 (2003) 976-987 [CrossRef].
  64. Lappi J., A longitudinal analysis of height/diameter curves, For. Sci. 43 (1997) 555-570.
  65. Lei Y., Parresol B.R., Remarks on height-diameter modelling, USDA Forest Service Research Note SRS-10, 2001.
  66. López C.A., Gorgoso J.J., Castedo F., Rojo A., Rodríguez R., Álvarez J.G., Sánchez F., A height-diameter model for Pinus radiata D. Don in Galicia (northwest Spain), Ann. For. Sci. 60 (2003) 237-245 [EDP Sciences] [CrossRef].
  67. Lundqvist B., On the height growth in cultivated stands of pine and spruce in northern Sweden, Medd. Fran Statens Skogforsk 47 (1957) 1-64.
  68. Mabvurira D., Maltamo M., Kangas A., Predicting and calibrating diameter distributions of Eucalyptus grandis (Hill) Maiden plantations in Zimbabwe, New. For. 23 (2002) 207-223.
  69. Maltamo M., Puumalainen J., Päivinen R., Comparison of Beta and Weibull functions for modelling basal area diameter distributions in stands of Pinus sylvestris and Picea abies, Scand. J. For. Res. 10 (1995) 284-295.
  70. MAPA, Anuario de Estadística Agroalimentaria 2003, Ministerio de Agricultura, Pesca y Alimentación, Subdirección General de Estadísticas Agroalimentarias, Secretaria General Técnica, 2004.
  71. Matney T.G., Sullivan A.D., Compatible stand and stock tables for thinned and unthinned loblolly pine stands, For. Sci. 28 (1982) 161-171.
  72. Merino A., Balboa M.A., Rodríguez R., Álvarez J.G., Nutrient exports under different harvesting regimes in fast-growing forest plantations in southern Europe, For. Ecol. Manage. 207 (2005) 325-339 [CrossRef].
  73. Milsum J.H., Biological Control Systems Analysis, McGraw-Hill, New York, 1966.
  74. Monserud R.A., Height growth and site index curves for inland Douglas-fir based on stem analysis data and forest habitat type, For. Sci. 30 (1984) 943-965.
  75. Newberry J.D., A note on Carmean's estimate of height from stem analysis data, For. Sci. 37 (1991) 368-369.
  76. Newby M., The properties of moment estimators for the Weibull distribution based on the sample coefficient of variation, Technometrics 22 (1980) 187-194 [CrossRef].
  77. Northway S.M., Fitting site index equations and other self-referencing functions, For. Sci. 31 (1985) 233-235.
  78. Parresol B.R., Recovering parameters of Johnson's SB distribution, USDA Forest Service, Res. Pap. SRS-31, 2003.
  79. Peet R.K., Christensen N.L., Competition and tree death, Bioscience 37 (1987) 586-595 [CrossRef].
  80. Pienaar L.V., Turnbull K.J., The Chapman-Richards generalization of von Bertalanffy's growth model for basal area growth and yield in even-aged stands, For. Sci. 19 (1973) 2-22.
  81. Pinjuv G., Mason E.G., Watt M., Quantitative validation and comparison of a range of forest growth model types, For. Ecol. Manage. 236 (2006) 37-46 [CrossRef].
  82. Reynolds M.R. Jr., Estimating the error in model predictions, For. Sci. 30 (1984) 454-469.
  83. Reynolds M.R.Jr., Burk T.E., Huang W.C., Goodness-of-fit tests and model selection procedures for diameter distributions models, For. Sci. 34 (1988) 373-399.
  84. Richards F.J., A flexible growth function for empirical use, J. Exp. Bot. 10 (1959) 290-300 [CrossRef].
  85. Río M. del, Régimen de claras y modelo de producción para Pinus sylvestris L. en los Sistemas Central e Ibérico, Tesis Doctorales INIA No. 2, Serie Forestal, 1999.
  86. Robinson A.P., Froese R.E., Model validation using equivalence tests, Ecol. Model. 176 (2004) 349-358 [CrossRef].
  87. Rykiel E.J., Testing ecological models: the meaning of validation, Ecol. Model. 90 (1996) 229-244 [CrossRef].
  88. Sánchez F., Rodríguez R., Rojo A., Álvarez J.G., López C., Gorgoso J., Castedo F., Crecimiento y tablas de producción de Pinus radiata D. Don en Galicia, Investig. Agrar. Sist. Recur. For. 12 (2003) 65-83.
  89. Sanchez-Gonzalez M., Tomé M., Montero G., Modelling height and diameter growth of dominant cork oak in Spain, Ann. For. Sci. 62 (2006) 633-643 [EDP Sciences] [CrossRef].
  90. Sargent R.G., Validation and verification of simulation models, in: Proceedings of the 1999 Winter Simulation Conference, Farrington H.B. et al. (Eds.), Institute of Electrical and Electronic Engineers, New York, 1999, pp. 39-48.
  91. SAS Institute Inc., SAS/ETS $^{\circledR}$ 9.1 User's Guide, Cary, NC: SAS Institute Inc., 2004.
  92. Schnute J., A versatile growth model with statistically stable parameters, Can. J. Fish. Aquatic. Sci. 38 (1981) 1128-1140.
  93. Sharma M., Zhang S.Y., Height-diameter models using stand characteristics for Pinus banksiana and Picea mariana, Scand. J. For. Res. 19 (2004) 442-451 [CrossRef].
  94. Tickle P.K., Coops N.C., Hafner S.D., The Bago Science Team, Assessing forest productivity at local scales across a native eucalypt forest using a process-based model, 3PG-SPATIAL, For. Ecol. Manage. 152 (2001) 275-291 [CrossRef].
  95. Torres-Rojo J.M., Magaña-Torres O.S., Acosta-Mireles M., Metodología para mejorar la predicción de parámetros de distribuciones diamétricas, Agrociencia 34 (2000) 627-637.
  96. Trincado G.V., Quezada P.R., Gadow K.v., A Comparison of two stand table projection methods for young Eucalyptus nitens (Maiden) plantations in Chile, For. Ecol. Manage. 180 (2003) 443-451 [CrossRef].
  97. Uribe A., Modelación del crecimiento de Pinus patula Schletch et Cham en la región Andina suroccidental colombiana, in: Ortega A., Gezan S. (Eds.), Proceedings of the IUFRO Conference on Modelling Growth of Fast-Grown Tree Species, Valdivia (Chile), 1997, pp. 36-51.
  98. Vanclay J.K., Modelling forest growth and yield. Applications to mixed tropical forests, CAB International, Wallingford, UK, 1994.
  99. Vanclay J.K., Growth models for tropical forests: a synthesis of models and methods, For. Sci. 41 (1995) 7-42.
  100. Vanclay J.K., Skovsgaard J.P., Evaluating forest growth models, Ecol. Model. 98 (1997) 1-12 [CrossRef].
  101. Woollons R.C., Even-aged stand mortality estimation through a two-step regression process, For. Ecol. Manage. 105 (1998) 189-195 [CrossRef].
  102. Xunta de Galicia, O monte galego en cifras. Dirección Xeral de Montes e Medio Ambiente Natural, Consellería de Medio Ambiente, Santiago de Compostela, 2001.
  103. Yang Y., Monserud R.A., Huang S., An evaluation of diagnostic test and their roles in validating forest biometric models, Can. J. For. Res. 34 (2004) 619-629 [CrossRef].
  104. Zarnoch S.J., Feduccia D.P., Baldwin V.C., Dell T.R., Growth and yield predictions for thinned and unthinned slash pine plantations on cutover sites in the West Gulf region, USDA Forest Service, Res. Pap. SO-264, 1991.
  105. Zimmerman D.L., Núñez-Antón V., Parametric modelling of growth curve data: An overview (with discussion), Test 10 (2001) 1-73 [CrossRef] [MathSciNet].