Free Access
Ann. For. Sci.
Volume 66, Number 8, December 2009
Article Number 808
Number of page(s) 12
Published online 25 November 2009
  • Barrio M., Diéguez-Ar, a U., Castedo-Dorado F., Álvarez J.G. and von Gadow K., 2007. Merchantable volume system for pedunculate oak in northwestern Spain. Ann. For. Sci. 64: 511–520 [CrossRef] [EDP Sciences] [Google Scholar]
  • Bates D.M. and Watts D.G., 1988. Nonlinear regression analysis and its applications, Wiley, New York. [Google Scholar]
  • Belsley D.A., 1991. Conditioning diagnostics, collinearity and weak data in regression, Wiley, New York [Google Scholar]
  • Bi H., 2000. Trigonometric variable-form taper equations for Australian eucalyptus. For. Sci. 46: 397–409 [Google Scholar]
  • Bruce R., Curtis L. and van Coevering C., 1968. Development of a system of taper and volume tables for red alder. For. Sci. 14: 339–350 [Google Scholar]
  • Burkhart H.E., 1977. Cubic-foot volume of loblolly pine to any merchantable top limit. South. J. Appl. For. 1: 7–9 [Google Scholar]
  • Cao Q.V., Burkhart H.E. and Max T.A., 1980. Evaluations of two methods for cubic-foot volume prediction of loblolly pine to any merchantable limit. For. Sci. 26: 71–80 [Google Scholar]
  • Castedo F., Barrio M., Parresol B.R. and Álvarez J.G., 2005. A stochastic height-diameter model for maritime pine ecoregions in Galicia (northwestern Spain). Ann. For. Sci. 62: 455–465 [CrossRef] [EDP Sciences] [Google Scholar]
  • Castedo-Dorado F., Diéguez-Ar, a U. and Álvarez-González J.G., 2007. A growth model for Pinus radiata D. Don stands in north-western Spain. Ann. For. Sci. 64: 453–465 [Google Scholar]
  • Catalán G., Gil P., Galera R.M., Martín S., Agúndez D. and Alía R., 1991. Las regiones de procedencia de Pinus sylvestris L. y Pinus nigra Arn. subsp. salzmannii (Dunal) Franco en Espana, ICONA, Ministerio de Agricultura, Pesca y Alimentacion, Madrid. [Google Scholar]
  • Ceballos L., 1966. Mapa Forestal de Espa na, 1:400,000, Direccion General de Montes, Caza y Pesca Fluvial, Ministerio de Agricultura, Madrid. [Google Scholar]
  • Clutter J.L., 1963. Compatible growth and yield models for loblolly pine. For. Sci. 9: 354–371 [Google Scholar]
  • Clutter J.L., 1980. Development of taper functions from variable top merchantable volume equations. For. Sci. 26: 117–120 [Google Scholar]
  • Corral-Rivas J.J., Diéguez-Ar, a U., Corral S. and Castedo F., 2007. A merchantable volumen system for major pine species in El Salto, Durango (Mexico). For. Ecol. Manage. 238: 118–129 [CrossRef] [Google Scholar]
  • Demaerschalk J., 1972. Converting volume equations to compatible taper equations. For. Sci. 18: 241–245 [Google Scholar]
  • Demaerschalk J.P. and Kozak A., 1977. The whole-bole system: a conditioned dual-equation system for precise prediction of tree profiles. Can. J. For. Res. 7: 488–497 [CrossRef] [Google Scholar]
  • Diéguez-Ar, a U., Castedo F., Álvarez J.G. and Rojo A., 2006. Compatible taper function for Scots pine plantations in northwestern Spain. Can. J. For. Res. 36: 1190–1205 [CrossRef] [Google Scholar]
  • Draper N.R. and Smith H., 1998. Applied Regression Analysis, 3rd ed., Wiley, New York. [Google Scholar]
  • Fang Z. and Bailey R.L., 1999. Compatible volume and taper models with coefficients for tropical species on Hainan Island in Southern China. For. Sci. 45: 85–100 [Google Scholar]
  • Fang Z., Borders B.E. and Bailey R.L., 2000. Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors. For. Sci. 46: 1–12 [Google Scholar]
  • FAO, 2006. Global Forest Resources Assessment 2005. Progress towards sustainable forest management, FAO Forestry Paper 147, Rome. [Google Scholar]
  • Goulding C.J. and Murray J., 1976. Polynomial taper equations that are compatible with tree volume equations. N. Z. J. For. Sci. 5: 313–322 [Google Scholar]
  • Huang S., Price D., Morgan D. and Peck K., 2000. Kozak’s variable-exponent taper equation regionalized for white spruce in Alberta. West.J. Appl. For. 15(2): 75–85. [Google Scholar]
  • Husch B., Miller C.I. and Beers T.W., 1982. Forest Mensuration, 3rd ed., Krieger Publishing Company, Malabar, Florida. [Google Scholar]
  • Jiang L., Brooks J.R. and Wang J., 2005. Compatible taper and volume equations for yellow-poplar in West Virginia. For. Ecol. Manage. 213: 399–409 [CrossRef] [Google Scholar]
  • Jordan L., Berenhaut K., Souter R. and Daniels R.F., 2005. Parsimonious and completely compatible taper, total and merchantable volume models. For. Sci. 51: 578–584 [Google Scholar]
  • Kozak A., 1988. A variable-exponent taper equation. Can. J. For. Res. 18: 1363–1368 [CrossRef] [Google Scholar]
  • Kozak A., 1997. Effects of multicollinearity and autocorrelation on the variable-exponent taper functions. Can. J. For. Res. 27: 619–629 [CrossRef] [Google Scholar]
  • Kozak A., 2004. My last words on taper functions. For. Chron. 80: 507–515 [Google Scholar]
  • Kozak A. and Kozak R.A., 2003. Does cross validation provide additional information in the evaluation of regression models? Can. J. For. Res. 33: 976–987 [Google Scholar]
  • Kozak A. and Smith J.H.G., 1993. Standards for evaluating taper estimating systems. For. Chron. 69: 438–444 [Google Scholar]
  • Kozak A., Munro D. and Smith J., 1969. Taper functions and their application in forest inventory. For. Chron. 45: 278–283 [Google Scholar]
  • Larson P.R., 1963. Stem form development of forest trees. For. Sci. Monogr. 5: 1–42 [Google Scholar]
  • Lizarralde I. and Bravo F., 2003. Crown and taper equations for scots pine (Pinus sylvestris L.) in northern Spain. In: Vacik H., Lexer M.J., Rauscher M.H., Reynolds K.M., and Brooks R.T. (Eds.), Decision support for multiple purpose forestry. A transdisciplinary conference on the development and application of decision support tools for forest management, April 23–25, 2003, University of Natural Resources and Applied Life Sciences, Vienna, Austria, CD-Rom Proceedings. [Google Scholar]
  • Martin A.J., 1984. Testing volume equation accuracy with water displacement techniques. For. Sci. 30: 41–50 [Google Scholar]
  • Max T.A. and Burkhart H.E., 1976. Segmented polynomial regression applied to taper equations. For. Sci. 22: 283–289 [Google Scholar]
  • MMA, 2005. Anuario de Estadística Forestal, Dirección General para la Biodiversidad, Ministerio de Medio Ambiente, Madrid. [Google Scholar]
  • Muhairwe C.K., 1999. Taper equations for Eucalyptus piluraris and Eucalyptus grandis for the north coast in New South Wales, Australia. For. Ecol. Manage. 113: 251–269 [CrossRef] [Google Scholar]
  • Myers R.H., 1990. Classical and modern regression with applications, 2nd ed., Duxbury Press, Belmont, California. [Google Scholar]
  • Neter J., Wasserman W. and Kutner M.H., 1990. Applied linear statistical models: regression, analysis of variance and experimental designs, 3nd ed., Irwin, Boston, Massachusetts. [Google Scholar]
  • Newnham R., 1988. A variable-form taper function. For. Can., Petawawa Natl. For. Inst., Inf. Rep. PI-X-83. [Google Scholar]
  • Newnham R., 1992. Variable-form taper functions for four Alberta tree species. Can. J. For. Res. 22: 210–223 [CrossRef] [Google Scholar]
  • Novo N., Rojo A. and Álvarez J.G., 2003. Funciones de perfil del tronco y tarifas de cubicación con clasificación de productos para Pinus sylvestris L. en Galicia. Investig. Agrar. Sist. Rec. For. 12: 123–136 [Google Scholar]
  • Parresol B.R. and Thomas C.E., 1996. A simultaneous density-integral system for estimating stem profile and biomass: slash pine and willow oak. Can. J. For. Res. 26: 773–781 [CrossRef] [Google Scholar]
  • Pillsbury N.H., McDonald P.M., Simon and V., 1995. Reliability of tanoak volume equations when applied to different areas. West. J. Appl. For. 10: 72–78 [Google Scholar]
  • Reed D. and Green E., 1984. Compatible stem taper and volume ratio equations. For. Sci. 30: 977–990 [Google Scholar]
  • Riemer T., von Gadow K. and Sloboda B., 1995. Ein Modell zur Beschreibung von Baumschäften. Allg. Forst Jagdztg. 166: 144–147 [Google Scholar]
  • Rojo A., Perales X., Sánchez-Rodríguez F., Álvarez-González J.G. and von Gadow K., 2005. Stem taper functions for maritime pine (Pinus pinaster Ait.) in Galicia (Northwestern Spain). Eur. J. For. Res. 124: 177–186 [CrossRef] [Google Scholar]
  • Ryan T.P., 1997. Modern regression methods, John Wiley & Sons Inc., New York. [Google Scholar]
  • SAS Institute Inc., 2004. SAS/ETS 9.1 user’s guide, SAS Institute Inc, Cary, N.C. [Google Scholar]
  • Saunders M.R. and Wagner R.G., 2008. Height-diameter models with random coefficients and site variables for tree species of Central Maine. Ann. For. Sci. 65: 203. [Google Scholar]
  • Schwarz G., 1978. Estimating the dimension of a model. Ann. Stat. 6(2): 461–464. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Sharma M. and Zhang S.Y., 2004. Variable-exponent taper equations for jack pine, black spruce, and balsam fir in eastern Canada. For. Ecol. Manage. 198: 39–53 [CrossRef] [Google Scholar]
  • Thomas C.E., Parresol B.R., Lê K.H.N. and Lohrey R.E., 1995. Biomass and taper for trees in thinned and unthinned longleaf pine plantations. South. J. Appl. For. 19: 29–35 [Google Scholar]
  • Valentine H.T. and Gregoire T.G., 2001. A switching model of bole taper. Can. J. For. Res. 31: 1400–1409 [CrossRef] [Google Scholar]
  • West P.W., Ratkowsky D.A. and Davis A.W., 1984. Problems of hypothesis testing of regressions with multiple measurements from individual sampling units. For. Ecol. Manage. 7: 207–224 [CrossRef] [Google Scholar]
  • Zakrzewski W.T. and MacFarlane D.W., 2006. Regional stem profile model for cross-border comparisons of harvested Red pine (Pinus resinosa Ait.) in Ontario and Michigan. For. Sci. 52: 468–475 [Google Scholar]
  • Zimmerman D.L. and Nú nez-Antón V., 2001. Parametric modeling of growth curve data: an overview (with discussion). Test 10: 1–73 [CrossRef] [Google Scholar]