Free Access
Ann. For. Sci.
Volume 66, Number 8, December 2009
Article Number 814
Number of page(s) 8
Published online 25 November 2009
  • Baker R.H.A., Sansford C.E., Gioli B., Miglietta F., Porter J.R. and Ewert F., 2005. Combining a disease model with a crop phenology model to assess and map pest risk: Karnal bunt disease (Tilletia indica) of wheat in Europe. In: Alford D.V. and Backhaus G.F. (Eds.), Plant protection and plant health in Europe: introduction and spread of invasive species, Humboldt University, Berlin, Germany, pp. 89–94
  • Biere A. and Honders S.J., 1996. Impact of flowering phenology of Silene alba and S. dioica on susceptibility to fungal infection and seed predation. Oikos 77: 467–480 [CrossRef]
  • Braun U., 1995. The powdery mildews (Erysiphales) of Europe, Gustav Fischer Verlag, Jena, Germany.
  • Bréda N., Granier A. and Aussenac G., 1995. Effects of thinning on soil water balance and trees water relations, transpiration and growth in an oak forest (Quercus petraea). Tree Physiol. 15: 295–306 [PubMed]
  • Cipollini D., 2002. Variation in the expression of chemical defenses in Alliaria petiolata (Brassicaceae) in the field and common garden. Am. J. Bot. 89: 1422–1430 [CrossRef] [PubMed]
  • Clel, C.C., Chuine I., Menzel A., Mooney H.A. and Schwartz M.D., 2007. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22: 357–365 [CrossRef] [PubMed]
  • Desprez-Loustau M.L. and Dupuis F., 1994. Variation in the phenology of shoot elongation between geographic provenances of maritime pine (Pinus pinaster) – implications for the synchrony with the phenology of the twisting rust fungus, Melampsora pinitorqua. Ann. Sci. For. 51: 553–568 [CrossRef]
  • Desprez-Loustau M.L., Belrose V., Bergot M., Capron G., Cloppet E., Husson C., Piou D., Reynaud G., Robin C. and Marçais B., 2008. Simulating effects of climate change on geographical range and impact of forest pathogenic fungi. In Desprez-Loustau (Coord.), Forests, carbon cycle and climate change, Editions Quae, coll. Science Update, pp. 258–288
  • Ducousso A., Guyon J.P. and Krémer A., 1996. Latitudinal and altitudinal variation of bud burst in western populations of sessil oak (Quercus petraea (Matt) Liebl). Ann. Sci. For. 53: 775–782 [CrossRef]
  • Edwards M.C. and Ayres P.G., 1982. Seasonal changes in resistance of Quercus petraea (sessile oak) leaves to Microsphaera alphitoides. Transactions of the British Mycological Society 78: 569–571 [CrossRef]
  • Foex M.E., 1941. L’invasion des chênes d’Europe par le blanc ou oidium. Rev. Eaux For. 79: 338–349
  • Kerling L.C.P., 1966. The hibernation of the oak mildew. Acta Botanica Neerlandica 15: 76–83
  • Lebourgeois F., 2007. The sensitivity of forest ecosystems to climate: what Renecofor has taught us. Rendez-Vous Techniques, 15: 64–68
  • Jailloux F., Thind T. and Clerjeau M., 1998. Release, germination and pathogenicity of ascospores of Uncinula necator under controlled conditions. Can. J. Bot. 76: 777–781 [CrossRef]
  • Jensen J.S. and Hansen J.K., 2008. Geographical variation in phenology of Quercus petraea (Matt.) Liebl and Quercus robur L. oak grown in a greenhouse. Scand. J. For. Res. 23: 179–188 [CrossRef]
  • Mc Donald B.A. and Linde C., 2002 Pathogen population genetics, evolutionary potential, and durable resistance. Ann. Rev. Phytopathol. 40: 349–379. [CrossRef] [PubMed]
  • Marçais B. and Bréda N., 2006. Role of an opportunistic pathogen in the decline of stressed oak trees. J. Ecol. 94: 1214–1223 [CrossRef]
  • Mmaga M.T., 2000. Winter survival and source of primary inoculum of powdery mildew of dogwood in Tenessee. Plant Dis. 84: 574–579 [CrossRef]
  • Mougou A., Dutech C. and Desprez-Loustau M.L., 2008. New insights into the identity and origin of the causal agent of oak powdery mildew in Europe. For. Pathol. 38: 275–287 [CrossRef]
  • Oleksyn J., Modrzynski J., Tjoelker M.G., Zytkowiak R., Reich P.B. and Karolewski P., 1998. Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Funct. Ecol. 12: 573–590 [CrossRef]
  • Pearson R.C. and Gadoury D.M., 1987. Cleistothecia, the source of primary inoculum for grape powdery mildew in New York. Phytopathology 77: 1509–1514 [CrossRef]
  • Penman L.N. and Annis S.L., 2005. Leaf and flower blight caused by Monilinia vaccinii-corymbosi on lowbush blueberry: effects on yield and relationship to bud phenology. Phytopathology 95: 1174–1182 [CrossRef] [PubMed]
  • Raymond J., 1927. Le “blanc” du chêne. Annale des Epiphyties 13: 94–129
  • Roslin T., Laine A.L. and Gripenberg S., 2007. Spatial population structure in an obligate plant pathogen colonizing oak Quercus robur. Funct. Ecol. 21: 1168–1177 [CrossRef]
  • Scotti-Saintagne C., Bodénès C., Barreneche T., Bertocchi E., Plomion C. and Kremer A., 2004. Detection of quantitative trait loci controlling bud burst and height growth in Quercus robur L. Theor. Appl. Genet. 109: 1648–1659 [CrossRef] [PubMed]
  • Soutrenon A., 1998. Une experimentation pluri-annuelle confirme l’impact de l’oïdium sur de jeunes sujets. Les cahiers du DSF, 1–2000 (la santé des forets [France] en 1997), Min. Agri. Pêche (DERF), Paris, 93–94
  • Spark T.H. and Carey P.D., 1995. The response of species to climate over two centuries: an analysis of the Marsham phenological record, 1736-1947. J. Ecol. 83: 321–329 [CrossRef]
  • Thomas F.M., Blank R. and Hartmann G., 2002. Abiotic and biotic factors and their interactions as causes of oak decline in central Europe. For. Pathol. 32: 277–307 [CrossRef]
  • Van Ash M. and Visser M.E., 2007. Phenology of forest caterpillars and their host trees: the importance of synchrony. Ann. Rev. Entomol. 52: 37–55 [CrossRef]
  • Visser M.E. and Holleman L.J.M., 2001. Warmer springs disrupt the synchrony of oak and winter moth phenology. Proceedings of the Royal Society London Series B 268: 89–94
  • Woodward R.C., Waldie J.S.L. and Steven H.M., 1929. Oak mildew and its control in forest nurseries. Forestry 3: 38–56