Free Access
Ann. For. Sci.
Volume 67, Number 1, January-February 2010
Article Number 104
Number of page(s) 7
Published online 24 December 2009
  • Adams M.A., 1996. Distribution of eucalypts in Australian landscapes: landforms, soils, fire and nutrition. In: Attiwill P.M., Adams M.A. (Eds.), Nutrition of eucalypts, CSIRO Australia, pp. 61–76.
  • Adams M.A., Richter A., Hill A.K. and Colmer T.D., 2005. Salt tolerance in Eucalyptus spp.: identity and response of putative osmolytes. Plant Cell Environ. 28: 772–787 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Arndt S.K., Livesley S., Merchant A., Bleby T. and Grierson P., 2008. Quercitol and osmotic adaptation of field grown Eucalyptus under seasonal drought stress. Plant Cell Environ. 31: 915–924 [CrossRef] [PubMed]
  • Bell D.T., 1999. Australian trees for the rehabilitation of waterlogged and salinity-damaged landscapes. Aust. J. Bot. 47: 697–716 [CrossRef]
  • Bell D.T. and Williams J.E., 1997. Eucalypt ecophysiology, In: Williams J., Woinarsky J. (Eds.), Eucalypt Ecology, Cambridge University Press, Cambridge.
  • Callister A.N. and Adams M.A., 2006. Water stress impacts on respiratory rate, efficiency and substrates, in growing and mature foliage of Eucalyptus spp. Planta 224: 680–691 [CrossRef] [PubMed]
  • Callister A.N., Arndt S.K. and Adams M.A., 2006. Comparison of four methods for measuring osmotic potential in tree leaves. Physiol. Plant. 127: 383–392 [CrossRef]
  • Clayton-Greene K.A., 1983. The tissue water relationships of Callitris columellaris, Eucalyptus melliodora and Eucalyptus microcarpa investigated using the pressure-volume technique. Oecologia 57: 368–373 [CrossRef] [PubMed]
  • Flexas J. and Medrano H., 2002. Energy dissipation in C-3 plants under drought. Funct. Plant Biol. 29: 1209–1215 [CrossRef]
  • Grieve C.M. and Shannon M.C., 1999. Ion accumulation and distribution in shoot components of salt- stressed Eucalyptus clones. J. Am. Soc. Hortic. Sci. 124: 559–563
  • Hare P.D., Cress W.A. and Van Staden J., 1998. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ. 21: 535–553 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Johansson S. and Tuomela K., 1996. Growth of 16 provenances of Eucalyptus microtheca in a regularly irrigated plantation in eastern Kenya. For. Ecol. Manage. 82: 11–18 [CrossRef]
  • Keiper F.J., Chen D.M. and De Filippis L.F., 1998. Respiratory, photosynthetic and ultrastructural changes accompanying salt adaptation in culture of Eucalyptus microcorys. J. Plant Physiol. 152: 564–573
  • Koppenaal R.S., Tschaplinski T.J. and Colombo S.J., 1991. Carbohydrate accumulation and turgor maintenance in seedling shoots and roots of 2 boreal conifers subjected to water stress. Can. J. Bot./Rev. Can. Bot. 69: 2522–2528 [CrossRef]
  • Lemcoff J.H., Guarnaschelli A.B., Garau A.M., Basciauli M.E. and Ghersa C.M., 1994. Osmotic adjustment and its use as a selection criterion in Eucalyptus seedlings. Can. J. For. Res. 24: 2404–2408 [CrossRef]
  • Li C.Y., 1998. Some aspects of leaf water relations in four provenances of Eucalyptus microtheca seedlings. For. Ecol. Manage. 111: 303–308 [CrossRef]
  • McManus M.T., Bieleski R.L., Caradus J.R. and Barker D.J., 2000. Pinitol accumulation in mature leaves of white clover in response to a water deficit. Environ. Exp. Bot. 43: 11–18 [CrossRef]
  • Merchant A. and Adams M.A., 2005. Stable osmotica in Eucalyptus spathulata – responses to salt and water deficit stress. Funct. Plant Biol. 32: 797–805 [CrossRef]
  • Merchant A., Adams M.A., Richter A. and Popp M., 2006. A metabolite approach provides functional links among eucalypt taxonomy, physiology and evolution. Phytochemistry 67: 402–408 [CrossRef] [PubMed]
  • Merchant A., Ladiges P.Y. and Adams M.A., 2007. Quercitol links the physiology, taxonomy and evolution of 279 eucalypt species. Glob. Ecol. Biogeogr. 16: 810–819 [CrossRef]
  • Merchant A., S.K A., A.N C. and M.A A., 2007. Contrasting physiological responses to water deficit in six Eucalyptus species. Ann. Bot. 100: 1507–1515 [CrossRef] [PubMed]
  • Merchant A., Tausz M., Arndt S.K. and Adams M.A., 2006. Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit. Plant Cell Environ. 29: 2017–2029 [CrossRef] [PubMed]
  • Myers B.A., Duff G.A., Eamus D., Fordyce I.R., O’grady A. and Williams R.J., 1997. Seasonal variation in water relations of trees of differing leaf phenology in a wet-dry tropical savanna near Darwin, northern Australia. Aust. J. Bot. 45: 225–240 [CrossRef]
  • Myers B.A. and Neales T.F., 1986. Osmotic adjustment, induced by drought, in seedlings of three Eucalyptus species. Austr. J. Plant Physiol. 13: 597–603 [CrossRef]
  • Niknam S.R. and McComb J., 2000. Salt tolerance screening of selected Australian woody species – a review. For. Ecol. Manage. 139: 1–19 [CrossRef]
  • Orthen B. and Popp M., 2000. Cyclitols as cryoprotectants for spinach and chickpea thylakoids. Environ. Exp. Bot. 44: 125–132 [CrossRef] [PubMed]
  • Orthen B., Popp M. and Smirnoff N., 1994. Hydroxyl radical scavenging properties of cyclitols, Proceedings of the Royal Society of Edinburgh Section B. Biological Sciences 102: 269–272
  • Passarinho J.A.P., Lamosa P., Baeta J.P., Santos H. and Ricardo C.P.P., 2006. Annual changes in the concentration of minerals and organic compounds of Quercus suber leaves. Physiol. Plant. 127: 100–110 [CrossRef]
  • Paul M.J. and Cockburn W., 1989. Pinitol, a compatible solute in Mesembryanthemum crystallinum L? J. Exp. Bot. 40: 1093–1098 [CrossRef]
  • Pita P. and Pardos J.A., 2001. Growth, leaf morphology, water use and tissue water relations of Eucalyptus globulus clones in response to water deficit. Tree Physiol. 21: 599–607 [PubMed]
  • Popp M., Lied W., Bierbaum U., Gross M., Grosse-Schulte T., Hams S., Oldenettel J., Schuler S. and Wiese J., 1997. Cyclitols-stable osmotica in trees. In: Rennenberg H., Eschrich W. and Ziegler H. (Eds.), Trees – Contributions to modern tree physiology, Backhuys Publ., Leiden, pp. 257–270.
  • Prior L.D. and Eamus D., 1999. Seasonal changes in leaf water characteristics of Eucalyptus tetrodonta and Terminalia ferdinandiana saplings in a northern Australian savanna. Aust. J. Bot. 47: 587–599 [CrossRef]
  • Rajam M.V., Dagar S., Waie B., Yadav J.S., Kumar P.A., Shoeb F. and Kumria R., 1998. Genetic engineering of polyamine and carbohydrate metabolism for osmotic stress tolerance in higher plants. J. Biosci. 23: 473–482 [CrossRef]
  • Sacher R.F. and Staples R.C., 1985. Inositol and sugars in adaption of tomato to salt. Plant Physiol. 77: 206–210 [CrossRef] [PubMed]
  • Schol, er P.F., Hammel E.D., Bradstreet E.D. and Hemmingsen E.A., 1965. Sap pressure in vascular plants, negative hydrostatic pressure can be measured in plants. Science 148: 339–346 [CrossRef] [PubMed]
  • Stoneman G.L., Turner N.C. and Dell B., 1994. Leaf growth, photosynthesis and tissue water relations of greenhouse-grown Eucalyptus-marginata seedlings in response to water deficits. Tree Physiol. 14: 633–646 [PubMed]
  • Sun D. and Dickinson G., 1993. Responses to salt stress of 16 Eucalyptus species, Grevillea-robusta, Lophostemon-confertus and Pinus-caribaea Var hondurensis. For. Ecol. Manage. 60: 1–14 [CrossRef]
  • Tuomela K., 1997. Leaf water relations in six provenances of Eucalyptus microtheca: A greenhouse experiment. For. Ecol. Manage. 92: 1–10 [CrossRef]
  • Turner N.C., 1988. Measurement of plant water status by the pressure chamber technique. Irrigation Science 9: 289–308 [CrossRef]
  • Turner N.C. and Jones M.M., 1980. Turgor maintenance by osmotic adjustment: A review and evaluation. In: Turner N.C., Kramer P.J. (Eds.), Adaptation of plants to water and high temperature stress, Wiley-InterScience, New York, pp. 155–172.
  • Turner N.C. and Long M.J., 1980. Errors arising from rapid water-loss in the measurement of leaf water potential by the pressure chamber technique. Austr. J. Plant Physiol. 7: 527–537 [CrossRef]
  • Tyree M.T. and Hammel H.T., 1972. Measurement of turgor pressure and water relations of plants by pressure-bomb technique. J. Exp. Bot. 23: 267–282 [CrossRef]
  • Van der Moezel P.G. and Bell D.T., 1987. Comparitive seedling salt tolerance of several Eucalyptus and Melaleuca species from Western Australia. Austr. For. Res. 17: 151–158
  • Van der Moezel P.G., Pearcepinto G.V.N. and Bell D.T., 1991. Screening for salt and waterlogging tolerance in Eucalyptus and Melaleuca species, For. Ecol. Manage. 40: 27–37 [CrossRef]
  • White D.A., Beadle C.L., S, s P.J., Worledge D. and Honeysett J.L., 1999. Quantifying the effect of cumulative water stress on stomatal conductance of Eucalyptus globulus and Eucalyptus nitens: a phenomenological approach. Austr. J. Plant Physiol. 26: 17–27 [CrossRef]
  • White D.A., Beadle C.L. and Worledge D., 1996. Leaf water relations of Eucalyptus globulus ssp. globulus and E. nitens: Seasonal, drought and species effects. Tree Physiol. 16: 469–476 [PubMed]
  • White D.A., Turner N.C. and Galbraith J.H., 2000. Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia. Tree Physiol. 20: 1157–1165 [PubMed]
  • Wingler A., 2002. The function of trehalose biosynthesis in plants. Phytochemistry 60: 437–440 [CrossRef] [PubMed]
  • Zohar Y. and Schiller G., 1998. Growth and water use by selected seed sources of Eucalyptus under high water table and saline conditions. Agric. Ecosyst. Environ. 69: 265–277 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Zubrinich T.M., Loveys B., Gallasch S., Seekamp J.V. and Tyerman S.D., 2000. Tolerance of salinized floodplain conditions in a naturally occurring Eucalyptus hybrid related to lowered plant water potential. Tree Physiol. 20: 953–963 [PubMed]