Open Access
Review
Issue
Ann. For. Sci.
Volume 67, Number 1, January-February 2010
Article Number 101
Number of page(s) 11
DOI https://doi.org/10.1051/forest/2009082
Published online 24 December 2009
  • Adams M.A. and Attiwill P.M., 1982. Nitrogen mineralization and nitrate reduction in forest. Soil. Biol. Biochem. 14: 197–202 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Aguiar F.C., Moreira I. and Ferreira M.T., 2001. Exotic and native vegetation establishment following channelization of a western Iberian river. Regul. Rivers. Res. Manage. 17: 509–526 [CrossRef] [Google Scholar]
  • Almeida J.D. and Freitas H., 2006. Exotic flora of continental Portugal – a reassessment. Botanica Compluteusis 30: 117–130 [Google Scholar]
  • Alpert P., Bone E. and Holzapfel C., 2000. Invasiveness, invisibility and the role of environmental stress in the spread of non-native plants. Perspective Plant Ecol. Evol. Systematics 3: 52–66 [CrossRef] [Google Scholar]
  • Anwar C., 1992. The growth of shorea seedlings on soil media of several age levels of Acacia mangium stands. Bul. Penelit. Hutan 544: 9–16 [Google Scholar]
  • Austin D.F., 1978. Exotic plants and their effects in southeastern Florida. Environ. Conserv. 5: 25–34 [CrossRef] [Google Scholar]
  • Ball M.C., Butterworth J., Roden J.S., Christian R. and Egerton J.J.G., 1995. Applications of chlorophyll fluorescence to forest ecology. Aust. J. Plant Physiol. 22: 311–319 [CrossRef] [Google Scholar]
  • Bashir Hussain S., 1991. Some observations on the effect of forest tree species on ground vegetation at Pabbi Forest, Kharian. Pak. J. For. 41: 173–177 [Google Scholar]
  • Bauhus J., van Winden A.P. and Nicotra A.B., 2004. Aboveground interactions and productivity in mixed-species plantations of Acacia mearnsii and Eucalyptus globulus. Can. J. For. Res. 34: 686–694 [CrossRef] [Google Scholar]
  • Bernhard-Reversat F., 1999. The leaching of Eucalyptus hybrids and Acacia auriculiformis leaf litter: laboratory experiments on early decomposition and ecological implications in Congolese tree plantations. Appl. Soil Ecol. 12: 251–261 [CrossRef] [Google Scholar]
  • Blakesley D., Allen A., Pellny T.K. and Roberts A.V., 2002. Natural and induced polyploidy in Acacia dealbata Link and Acacia mangium Wild. Ann. Bot. 90: 391–398 [CrossRef] [PubMed] [Google Scholar]
  • Blossey B. and Nötzold R., 1995. Evolution of increased competitive ability in invasive non-indigenous plants: a hypothesis. J. Ecol. 83: 887–889 [CrossRef] [Google Scholar]
  • Broadhurst L.M. and Young A.G., 2006. Reproductive constraints for the long-term persistence of fragmented Acacia dealbata (Mimosaceae) populations in southeast Australia. Biol. Conserv. 133: 512–526 [CrossRef] [Google Scholar]
  • Brown J., Enright N.J. and Miller B.P., 2003. Seed production and germination in two rare and three common co-occurring Acacia species from south-east Australia. Austral Ecol. 28: 271–280 [CrossRef] [Google Scholar]
  • Brown J.R. and Carter J., 1998. Spatial and temporal patterns of exotic shrub invasion in an Australian tropical grassland. Landsc. Ecol. 13: 93–102 [CrossRef] [Google Scholar]
  • Bruno J.F., Stachowicz J.J. and Bertness, 2003. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18: 119–125. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Callaway R.M. and Aschehoug E.T., 2000. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290: 521–523 [CrossRef] [PubMed] [Google Scholar]
  • Callaway R.M. and Ridenour W.M., 2004. Novel weapons: invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2: 436–443 [CrossRef] [Google Scholar]
  • Callaway R.M., Pennings S.C. and Richards C.L., 2003. Phenotypic plasticity and interactions among plants. Ecol. 84: 1115–1128 [CrossRef] [Google Scholar]
  • Carballeira A. and Reigosa M.J., 1999. Effects of natural leachates of Acacia dealbata Link in Galicia (NW Spain). Bot. Bull. Acad. Sin. 40: 87–92 [Google Scholar]
  • Carr G.W., 2001. Australian plants as weeds in Victoria. Plant Prot. Q. 16: 124–125 [Google Scholar]
  • Cheal D., 2002. Acacia obtusifolia – introduction and spread in native bush. Vic. Nat. 119: 231–232 [Google Scholar]
  • Chou C.H., Fu C.Y., Li S.Y. and Wang Y.F., 1998. Allelopathic potential of Acacia confusa and related species in Taiwan. J. Chem. Ecol. 24: 2131–2150 [CrossRef] [Google Scholar]
  • Chytrý M., Pyšek P., Wild J., Pino J., Maskell L.C. and Vilà M., 2009. European map of alien plant invasions based on the quantitative assessment across habitats. Divers. Distrib. 15: 98–107 [CrossRef] [Google Scholar]
  • Coetzee B.W.T., van Rensburg B.J. and Robertson M.P., 2007. Invasion of grasslands by silver wattle, Acacia dealbata (Mimosaceae), alters beetle (Coleoptera) assemblage structure. Afric. Entomol. 15: 328–339 [CrossRef] [Google Scholar]
  • Colautti R.I., Grigorovich I.A. and MacIsaac H.J., 2006. Propagule pressure: a null model for biological invasions Biol. Invasions 8: 1023–1037 [CrossRef] [Google Scholar]
  • Cronk Q.B. and Fuller J.L., 1995. Plant invaders, Chapman and Hall, London, UK. [Google Scholar]
  • Danthu P., Ndongo M., Diaou M., Thiam O., Sarr A., Dedhiou B. and et al., 2003. Impact of bush fire on germination of some West African acacias. For. Ecol. Manage. 173: 1–10. [CrossRef] [Google Scholar]
  • Davidson D.W. and Morton S.R., 1984. Dispersal adaptations of some Acacia species in the Australian arid zone. Ecology 65: 1038–1051 [CrossRef] [Google Scholar]
  • Davis M.A., Grime J.P. and Thompson K., 2000. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol. 88: 528–534 [CrossRef] [Google Scholar]
  • De Neergaard A., Saarnak C., Hill T., Khanyile M., Berzosa A.M. and Birch-Thomsen T., 2005. Australian wattle species in the Drakensberg region of South Africa – an invasive alien or a natural resource? Agric. Syst. 85: 216–233 [Google Scholar]
  • Dennill G.B. and Donnelly D., 1991. Biological control of Acacia longifolia and related weed species (Fabaceae) in South Africa. Agric. Ecosyst. Environ. 37: 115–135 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Di Castri F., 1989. History of biological invasions with special emphasis on the Old World. In: Drake J.A., Mooney H.A., di Castri F., Groves R.H., Kruger F.J., Rejmánek M. and Williamson M. (Eds.), Biological invasions: a global perspective, John Wiley & Sons, New York, USA. [Google Scholar]
  • Dudley J.P., 1999. Seed dispersal of Acacia erioloba by African bush elephants in Hawange National Park, Zimbabwe. Afr. J. Ecol. 37: 375–385 [CrossRef] [Google Scholar]
  • Edwards W. and Westoby M., 1996. Reserve mass and dispersal investment in relation to geographic range of plant species: phylogenetically independent contrasts. J. Biogeogr. 23: 329–338 [CrossRef] [Google Scholar]
  • Elton C.S., 1958. The ecology of invasions by animals and plants, Methuen, London, UK. [Google Scholar]
  • Freire C.S., Coelho D.S., Santos N.M., Silvestre A.J. and Pascoal Neto C., 2005. Identification of Δ7-phytosterols and phytosteryl glucosides in the wood and bark of several Acacia species. Lipids 40: 317–322 [CrossRef] [PubMed] [Google Scholar]
  • Freire C.S.R., Silvestre A.J.D. and Pascoal Neto C., 2007. Demonstration of long-chain n − alkyl caffeates and Δ7-steryl glucosides in the bark of Acacia species by gas chromatography-mass spectrometry. Phytochem. Anal. 18: 151–156 [CrossRef] [PubMed] [Google Scholar]
  • French K. and Major R.E., 2001. Effect of an exotic Acacia (Fabaceae) on ant assemblages in South African fynbos. Austral Ecol. 26: 303–310 [CrossRef] [Google Scholar]
  • Gerald E. and Obua J., 2005. Tree condition and natural regeneration in disturbed sites of Bwindi Impenetrable Forest National Park, southwestern Uganda. Trop. Ecol. 46: 99–111 [Google Scholar]
  • Gómez C. and Espadaler X., 1998. Myrmecochorous dispersal distances: a world survey. J. Biogeogr. 25: 573–580 [CrossRef] [Google Scholar]
  • González L., Souto X.C. and Reigosa M.J., 1995. Allelopathic effects of Acacia melanoxylon R.Br. phyllodes during their decomposition. Forest Ecol. Manage. 77: 53–63 [CrossRef] [Google Scholar]
  • Gray A., 1879. The predominance and pertinacity of weeds. Am. J. Sci. Arts 118: 161–167 [Google Scholar]
  • Hadacek F., 2002. Secondary metabolites as plant traits: current assessment and future perspectives. Crit. Rev. Plant Sci. 21: 273–322 [CrossRef] [Google Scholar]
  • Heil M., Delsinne T., Hilpert A., Schürkens S., Andary C., Linsenmair K.E. et al., 2002. Reduced chemical defense in ant-plants? A critical re-evaluation of a widely accepted hypothesis. Oikos 99: 457–468. [CrossRef] [Google Scholar]
  • Hickey J.E., 1994. A floristic comparison of vascular species in Tasmanian oldgrowth mixed forest with regeneration resulting from logging and wildfire. Aust. J. Bot. 42: 383–404 [CrossRef] [Google Scholar]
  • Hierro J.L., Maron J.L. and Callaway R.M., 2005. A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J. Ecol. 93: 5–15 [CrossRef] [Google Scholar]
  • Hoffmann J.H., Impson F.A.C., Moran V.C. and Donnelly D., 2002. Biological control of invasive golden wattle trees (Acacia pycantha) by a gall wasp, Trichilogaster sp. (Hymenoptera: Pteromalidae), in South Africa. Biol. Control 25: 64–73 [CrossRef] [Google Scholar]
  • Horvitz C.C. and Beattie A.J., 1980. Ant dispersal of Calathea (Marantaceae) seeds by carnivorous ponerines (Formicidae) in a tropical rain forest. Am. J. Bot. 67: 321–326 [CrossRef] [Google Scholar]
  • Hunt A.M., Unwin G.L. and Beadle C.L., 1999. Effects of naturally regenerated Acacia dealbata on the productivity of a Eucalyptus nitens plantation in Tasmania, Australia. For. Ecol. Manage. 117: 75–85 [CrossRef] [Google Scholar]
  • Imperato F., 1982. A chalcone glycoside from Acacia dealbata. Phytochemistry 21: 480–481 [CrossRef] [Google Scholar]
  • Inderjit, Callaway R.M. and Vivanco J.M. 2006. Plant biochemistry helps to understand invasion ecology. Trends Plant Sci. 11: 574–580. [CrossRef] [PubMed] [Google Scholar]
  • Jadhav B.B. and Gaynar D.G., 1992. Allelopathic effects of Acacia auriculiformis A. Cunn on germination of rice and cowpea. Indian J. Plant. Physiol. 35: 86–89 [Google Scholar]
  • Keane R.M. and Crawley M.J., 2002. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17: 164–170 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Kenrick J., 2003. Review of pollen-pistil interactions and their relevance to reproductive biology of Acacia. Aust. Syst. Bot. 16: 119–130 [CrossRef] [Google Scholar]
  • Kriticos D.J., Sutherst R.W., Brown J.R., Adkins S.W. and Maywald G.F., 2003. Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J. Appl. Ecol. 40: 111–124 [CrossRef] [Google Scholar]
  • Kulkarni M.G., Sparg S.G. and Van Staden J., 2007. Germination and post-germination response of Acacia seeds to smoke-water and butenolide, a smoke-derived compound. J. Arid Environ. 69: 177–187 [CrossRef] [Google Scholar]
  • Kunii Y., Otsuka M., Kashino S., Takeuchi H. and Ohmori S., 1996. 4-Hydroxypipecolic acid and pipecolic acid in Acacia species: their determination by High-Performance Liquid Chromatography, its application to leguminous plants, and configuration of 4-hydroxypipecolic acid. J. Agric. Food. Chem. 44: 483–487 [CrossRef] [Google Scholar]
  • Lake J.C. and Leishman M.R., 2004. Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol. Conserv. 117: 215–226 [CrossRef] [Google Scholar]
  • Lambers H., Chapin III F.S. and Pons T.L., 1998. Plant physiological ecology, Springer, Berlin, Germany. [Google Scholar]
  • Lamprey H.F., 1967. Notes on the dispersal and germination of some tree seeds through the agency of mammals and birds. East Afr. Wildl. J. 5: 179–180 [Google Scholar]
  • Lamprey H.F., Halevy G. and Makacho S., 1974. Interactions between Acacia, bruchid seed beetles and large herbivores. East Afr. Wildl. J. 12: 81–85 [Google Scholar]
  • Lonsdale W.M., 1999. Global patterns of plant invasions and the concept of invisibility. Ecology 80: 1522–1536 [CrossRef] [Google Scholar]
  • Lorenzo P., Pazos-Malvido E., González L. and Reigosa M.J., 2008. Allelopathic interference of invasive Acacia dealbata: physiological effects. Allelopathy J. 22: 452–462 [Google Scholar]
  • Lortie C.J., Brooker R.W., Choler P., Kikvidze Z., Michalet R., Pugnaire F.I. and Callaway R.M., 2004. Rethinking plant community theory. Oikos 107: 433–438 [CrossRef] [Google Scholar]
  • Mack R.N., Simberloff D., Lonsdale W.M., Evans H., Clout M. and Bazzaz F.A., 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10: 689–710 [CrossRef] [Google Scholar]
  • Marchante H., Marchante E., Buscardo E., Maia J. and Freitas H., 2004. Recovery potential of dune ecosystems invaded by the exotic species Acacia longifolia. Weed Technol. 18: 1427–1433 [CrossRef] [Google Scholar]
  • Martínez J., Vega-Garcia, C., Chuvieco and E., 2009. Human-caused wildfire risk rating for prevention planning in Spain. J. Environ. Manag. 90: 1241–1252 [CrossRef] [Google Scholar]
  • Maslin B.R., Miller J.T. and Seigler D.S., 2003. Overview of the generic status of Acacia (Leguminosae: Mimosoideae). Aust. Syst. Bot. 16: 1–18 [CrossRef] [Google Scholar]
  • Maslin R. and McDonald M.W., 2004. Acacia Search. Evaluation of Acacia as a woody crop option for southern Australia, RIRDC. Union Offset Printers, Canberra, Australia. [Google Scholar]
  • May B.M. and Attiwill P.M., 2003. Nitrogen-fixation by Acacia dealbata and changes in soil properties 5 years after mechanical disturbance or slash-burning following timber harvest. For. Ecol. Manage. 181: 339–355 [CrossRef] [Google Scholar]
  • Midgley J.J. and Bond W.J., 2001. A synthesis of the demography of African acacias. J. Trop. Ecol. 17: 871–886 [Google Scholar]
  • Murphy H.T., Van der Wal, J., Lovett-Doust L. and Lovett-Doust J., 2006. Invasiveness in exotic plants: immigration and naturalization in an ecological continuum. In: Cadotte M.W., McMahon S.M. and Fukami T. (Eds.), Conceptual ecology and invasion biology: reciprocal approaches to nature, Dordrecht, Netherlands. [Google Scholar]
  • Or K. and Ward, 2003. Three-way interactions between Acacia, large herbivores and bruchid beetles: a review. Afr. J. Ecol. 41: 257–265. [CrossRef] [Google Scholar]
  • Orchard A.E. and Maslin B.R., 2003. Proposal to conserve the name Acacia (Leguminosae: Mimosoideae) with a conserved type. Taxon 52: 362–363 [CrossRef] [Google Scholar]
  • Osunkoya O.O., Bujang D., Moksin H., Wimmer F.L. and Holige T.M., 2004. Leaf properties and construction costs of common, co-occurring plant species of disturbed heath forest in Borneo. Aust. J. Bot. 52: 499–507 [CrossRef] [Google Scholar]
  • Osunkoya O.O., Othman F.E. and Kahar R.S., 2005. Growth and competition between seedlings of an invasive plantation tree, Acacia mangium, and those of a native Borneo heath-forest species, Nelastoma beccarianum. Ecol. Res. 20: 205–214 [CrossRef] [Google Scholar]
  • Pereira F.B.M., Domingues F.M.J. and Silva A.M.S., 1996. Triterpenes from Acacia dealbata. Nat. Prod. Lett. 8: 97–103 [Google Scholar]
  • Pohlman C.L., Nicotra A.B. and Murray B.R., 2005. Geographic range size, seedling ecophysiology and phenotypic plasticity in Australian Acacia species. J. Biogeogr. 32: 351. [Google Scholar]
  • Proche¸sŞ., Wilson J.R.U., Richardson D.M. and Chown S.L., 2008. Herbivores, but not other insects, are scarce on alien plants. Austral Ecol. 33: 691–700 [CrossRef] [Google Scholar]
  • Rafiqul Hoque A.T.M., Ahmed R., Uddin M.B. and Hossain M.K., 2003. Allelopathic effect of different concentration of water extracts of Acacia auriculiformis leaf on some initial growth parameters of five common agricultural crops. Pak. J. Agron. 2: 92–100 [Google Scholar]
  • Rama Devi S. and Prasad M.N.V., 1991. Tannins and related polyphenols from ten common Acacia species of India. Bioresour. Technol. 36: 189–192 [CrossRef] [Google Scholar]
  • Razanam, ranto S., Tigabu M., Neya S. and Oden P.C., 2004. Effects of gut treatment on recovery and germinability of bovine and ovine ingested seeds of four woody species from the Sudanian savanna in West Africa. Flora 199: 389–397 [Google Scholar]
  • Reigosa M.J., 1987. Estudio del potencial alelopático de Acacia dealbata Link. Ph.D. thesis, Universidad de Santiago, Santiago de Compostela, Spain. [Google Scholar]
  • Reigosa M.J., Souto X.C. and Gonzalez L., 1999. Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regul. 28: 83–88 [CrossRef] [Google Scholar]
  • Rice E.L., 1984. Allelopathy, Acacemic Press, Orlando, Florida. [Google Scholar]
  • Rouget M. and Richardson D.M., 2003. Inferring process from pattern in plant invasions: a semimechanistic model incorporating propagule pressure and environment factors. Am. Nat. 162: 713–724 [CrossRef] [PubMed] [Google Scholar]
  • Schumann W., Little K.M. and Eccles N.S., 1995. Suppression of seed germination and early seedling growth by plantation harvest residues. S. Afr. J. Plant Soil 12: 170–172 [Google Scholar]
  • Sedgley M. and Harbard J., 1993. Pollen storage and breeding system in relation to controlled pollination of four species of Acacia (Leguminosae, Mimosoideae). Aust. J. Bot. 40: 601–609 [CrossRef] [Google Scholar]
  • Seigler D.S., 2002. Economic potential from Western Australian Acacia species: secondary plant products. Conserv. Sci. W. Aust. 4: 109–116 [Google Scholar]
  • Seigler D.S., 2003. Phytochemistry of Acacia-sensu lato. Biochem. Syst. Ecol. 31: 845–873 [CrossRef] [Google Scholar]
  • Sharma G.P., Raghubanshi A.S. and Singh J.S., 2005. Lantana invasion: An overview. Weed Biol. Manag. 5: 157–165 [CrossRef] [Google Scholar]
  • Sharma G.P., Singh J.S. and Raghubanshi A.S., 2005. Plant invasions: emerging trends and future implications. Curr. Sci. India 88: 726–734 [Google Scholar]
  • Sheppard A.W., Shaw R.H. and Sforza R., 2006. Top 20 environmental weeds for classical biological control in Europe: a review of opportunities, regulations and other barriers to adoption. Weed Res. 46: 93–117 [CrossRef] [Google Scholar]
  • Snyder R.E., Chesson and P., 2004. How the scales of dispersal, competition, and environmental heterogeneity interact of affect coexistence. Am. Nat. 164: 633–650 [CrossRef] [PubMed] [Google Scholar]
  • Souto X.C., Bolano J.C., Gonzalez L. and Reigosa M.J., 2001. Allelopathic effects of tree species on some soil microbial populations and herbaceous plants. Biol. Plant. 44: 269–275 [CrossRef] [Google Scholar]
  • Spooner P.G., 2005. Response of Acacia species to disturbance by roadworks in roadside environments in southern New Wales, Australia. Biol. Conserv. 122: 231–242 [CrossRef] [Google Scholar]
  • Stone G.N., Raine N.E., Prescott M. and Willmer P.G., 2003. Pollination ecology of acacias (Fabaceae, Mimosoideae). Aust. Syst. Bot. 16: 103–118 [CrossRef] [Google Scholar]
  • Sultan S.E., 1995. Phenotypic plasticity and plant adaptation. Acta Bot. Neerl. 44: 363–383 [Google Scholar]
  • Theoharides K.A. and Dukes J.S., 2007. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol. 176: 256–273 [CrossRef] [PubMed] [Google Scholar]
  • Tutin T.G., Burger N.A., Chater A.O., Edmonsen J.R., Heywood V.H., Moore D.M. et al., 2001. Flora Europaea V, Cambridge University Press, Cambridge, UK. [Google Scholar]
  • Tybirk K., 1993. Pollination, breeding system and seed abortion in some African acacias. Bot. J. Linn. Soc. 112: 107–137 [CrossRef] [Google Scholar]
  • Varela O. and Bucher E.H., 2006. Passage time, viability, and germination of seeds ingested by foxes. J. Arid Environ. 67: 566–578 [CrossRef] [Google Scholar]
  • Whitney K.D., 2002. Dispersal for distance? Acacia ligulata seeds and meat ants Iridomyrmex viridiaeneus. Austral Ecol. 27: 589–595 [CrossRef] [Google Scholar]
  • Wilcock C., Neil and R., 2002. Pollination failure in plants: why it happens and when it matters. Trends Ecol. Evol. 7: 270–277 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Wright I.J., Reich P.B. and Westoby M., 2001. Strategy shifts in leaf physiology, structure and nutrient content between species of high and low rainfall, and high and low nutrient habitats. Funct. Ecol. 15: 423–434 [CrossRef] [Google Scholar]