Free Access
Ann. For. Sci.
Volume 67, Number 2, March-April 2010
Article Number 207
Number of page(s) 7
Published online 01 February 2010
  • Allen S.E., Grimshaw H.M. and Rowland A.P., 1986. Chemical analysis. In: Moore P.D. and Chapman S.B. (Eds.), Methods in Plant Ecology, Blackwell Scientific, Oxford, pp. 285–344. [Google Scholar]
  • Brookes P.C., Powlson D.S. and Jenkinson D.S., 1982. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 14: 319–329 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Cabrera M.L. and Beare M.H., 1993. Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Sci. Soc. Am. J. 57: 1007–1012 [CrossRef] [Google Scholar]
  • Carreira J.A., Niell F.X. and Lajtha K., 1994. Soil nitrogen availability and nitrification in Mediterranean shrublands of varying fire history and successional stage. Biogeochemistry 26: 189–209 [Google Scholar]
  • Certini G., 2005. Effects of fire on properties of forest soils: a review. Oecologia. 143: 1–10 [CrossRef] [PubMed] [Google Scholar]
  • Chorover J., Vitousek P.M., Everson D.A., Esperanza A.M. and Turner D., 1994. Solution chemistry profiles of mixed-conifer forests before and after fire. Biogeochemistry 26: 115–144 [CrossRef] [Google Scholar]
  • Christou M., Avramides E.J. and Jones D.L., 2006. Dissolved organic nitrogen DeBano L.F. and Conrad C.E., 1978. The effect of fire on nutrients in a chaparral ecosystem. Ecology 59: 489–497 [Google Scholar]
  • D’Elia C.F., Steudler P.A. and Corwin N., 1977. Determination of total nitrogen in aqueous samples using persulfate digestion. Limnol. Oceanogr. 22: 760–764 [CrossRef] [Google Scholar]
  • Dumontet S., Dinel H., Scopa A., Mazzatura A. and Saracino A., 1996. Post-fire soil microbial biomass and nutrient content of a pine forest soil from a dunal Mediterranean environment. Soil Biol. Biochem. 28: 1467–1475 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Fernandes P.A.M., Loureiro C.A. and Botelho H.S., 2004. Fire behaviour and severity in a maritime pine stand under differing fuel conditions. Ann. For. Sci. 61: 537–544 [CrossRef] [EDP Sciences] [Google Scholar]
  • Galloway J.N., Townsend A.R., Erisman J.W., Bekunda M., Cai Z., Freney J.R., Martinelli L.A., Seitzinger S.P. and Sutton M.A., 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320: 889–892 [CrossRef] [PubMed] [Google Scholar]
  • González J.R., Palahí M., Trasobares A. and Pukkala T., 2006. A fire probability model for forest stands in Catalonia (north-east Spain). Ann. For. Sci. 63: 169–176 [CrossRef] [EDP Sciences] [Google Scholar]
  • Grogan P., Burns T.D. and Chapin III F.S., 2000. Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecologia 122: 537–544 [CrossRef] [PubMed] [Google Scholar]
  • Hernández T., García C. and Reinhardt I., 1997. Short-term effect of wildfire on the chemical, biochemical and microbiological properties of Mediterranean pine forest soils. Biol. Fertil. Soils 25: 109–116 [CrossRef] [Google Scholar]
  • Jones D.L. and Kielland K., 2002. Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biol. Biochem. 34: 209–219 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Keeley J.E. and Zedler P.J., 1978. Reproduction of chaparral shrubs after fire: a comparison of sprouting and seeding strategies. Am. Midl. Nat. 99: 142–161 [CrossRef] [Google Scholar]
  • Kranabetter J.M., Dawson C.R. and Dunn D.E., 2007. Indices of dissolved organic nitrogen, ammonium and nitrate across productivity gradients of boreal forests. Soil Biol. Biochem. 39: 3147–3158 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Kutiel P. and Naveh Z., 1987. The effect of fire on nutrients in a pine forest soil. Plant Soil 104: 269–274 [CrossRef] [Google Scholar]
  • Legout A., Walter C. and Nys C., 2008. Spatial variability of nutrient stocks in the humus and soils of a forest massif (Fougères, France). Ann. For. Sci. 65: 108. [CrossRef] [EDP Sciences] [Google Scholar]
  • Mabuhay J., Nakagoshi N. and Horikosh T., 2003. Microbial biomass and abundance after forest fire in pine forests in Japan. Ecol. Res. 18: 431–441 [CrossRef] [Google Scholar]
  • Palese A.M., Giovannini G., Lucchesi S. and Perucci P., 2004. Effect of fire on soil C, N and microbial biomass. Agronomie 24: 47–53 [CrossRef] [Google Scholar]
  • Pappa A.A., Tzamtzis N.E. and Koufopoulou S.E., 2008. Nitrogen leaching from a forest soil exposed to fire retardant with and without fire: a laboratory study. Ann. For. Sci. 65: 210. [CrossRef] [EDP Sciences] [Google Scholar]
  • Prieto-Fernández A., Villar M.C., Carballas M. and Carballas T., 1993. Short-term effects of a wildfire on the nitrogen status and its mineralization kinetics in an atlantic forest soil. Soil Biol. Biochem. 25: 1657–1664 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Raison R.J., 1979. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant Soil 51: 73–108 [CrossRef] [Google Scholar]
  • Rambal S. and Hoff C., 1998. Mediterranean ecosystems and fire: the threats of global change. In: Moreno J.M. (Ed.), Large forest fires, Backhuys Publishers, Leiden, The Netherlands, pp. 187–213. [Google Scholar]
  • Rodríguez A.,Durán J., Fernández-Palacios J.M. and Gallardo A., 2009. Wildfire changes the spatial pattern of soil nutrient availability in Pinus canariensis forests. Ann. For. Sci. 66: 210. [CrossRef] [EDP Sciences] [Google Scholar]
  • Sims G.K., Ellsworth T.R. and Mulvaney R.L., 1995. Microscale determination of inorganic nitrogen in water and soil extracts. Commun. Soil Sci. Plant. Anal. 26: 303–316 [CrossRef] [Google Scholar]
  • Smithwick E.A.H., Turner M.G., Mack M.C. and Chapin III F.S.C., 2005. Postfire soil N cycling in Northern conifer forests affected by severe, stand-replacing wildfires. Ecosystems 8: 163–181 [CrossRef] [Google Scholar]
  • Sparling G.P., Hart P.B.S., August J.A. and Leslie D.M., 1994. A comparison of soil and microbial carbon, nitrogen, and phosphorus contents, and macro-aggregate stability of a soil under native forest and after clearance for pastures and plantation forest. Biol. Fertil. Soils 17: 91–100 [CrossRef] [Google Scholar]
  • Vance E.D. and Nadkarni N.M., 1990. Microbial biomass and activity in canopy organic matter and the forest floor of a tropical cloud forest. Soil Biol. Biochem. 22: 677–684 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Vitousek P.M., Gosz J.R., Grier C.C., Melillo J.M., Reiners W.A. and Todd R.L., 1979. Nitrate losses from disturbed ecosystems. Science 204: 469–474 [CrossRef] [PubMed] [Google Scholar]
  • Wan S., Hui D. and Luo Y., 2001. Fire-Effects on nitrogen pools and dynamics in terrestrial ecosystems: a meta-analysis. Ecol. Appl. 11: 1349–1365 [CrossRef] [Google Scholar]
  • Wirth C., Schulze E.-D., Lühker B., Grigoriev S., Siry M., Hordes G., Ziegler W., Backor M., Bauer G. and Vygodskaya N.N., 2002. Fire and site type effects on the long-term carbon and nitrogen balance in pristine Siberian Scots pine forests. Plant Soil 242: 41–63 [CrossRef] [Google Scholar]