Free Access
Ann. For. Sci.
Volume 67, Number 3, May 2010
Article Number 308
Number of page(s) 10
Section Original articles
Published online 18 February 2010
  • Balaguer L., Afif D., Dizengremel P. and Dreyer E., 1996. Specificity factor of ribulose biphosphate carboxylase/oxygenase of Quercus robur. Plant Physiol. Biochem. 34: 879–883 [Google Scholar]
  • Brooks A. and Farquhar G.D., 1985. Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase oxygenase and the rate of respiration in the light – estimates from gas-exchange measurements on spinach. Planta 165: 397–406 [CrossRef] [PubMed] [Google Scholar]
  • Christensen J.H., Hewitson B., Busuioc A., Chen A., Gao X., Held I., Jones R., Kolli R.K., Kwon W.T., Laprise R., Rueda V.M., Mearns L., Menéndez C.G., Räisänen J., Rinke A., Sarr A. and Whetton P., 2007. Regional Climate Projections. In: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M. and Miller H.L. (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, United Kingdom and New York, pp. 847–940. [Google Scholar]
  • Delfine S., Alvino A., Zacchini M. and Loreto F., 1998. Consequences of salt stress on conductance to CO2 diffusion, Rubisco characteristics and anatomy of spinach leaves. Aust. J. Plant Physiol. 25: 395–402 [CrossRef] [Google Scholar]
  • Epron D., Godard D., Cornic G. and Genty B., 1995. Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.). Plant Cell Environ. 18: 43–51 [Google Scholar]
  • Ethier G.J. and Livingston N.J., 2004. On the need to incorporate sensitivity to CO2 transfer conductance into Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ. 27: 137–153 [Google Scholar]
  • Farquhar G.D., O’Leary M.H. and Berry J.A., 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9: 121–137 [Google Scholar]
  • Farquhar G.D., Ehleringer J.R. and Hubick K.T., 1989. Carbon isotope discrimination and photosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40: 503–537 [Google Scholar]
  • Fleck I., Grau D., Sanjosé M. and Vidal D., 1996. Carbon isotope discrimination in Quercus ilex resprouts after fire and tree-fell. Oecologia 105: 286–292 [CrossRef] [PubMed] [Google Scholar]
  • Fleck I., Hogan K.P., Llorens L., Abadía A. and Aranda X., 1998. Photosynthesis and photoprotection in Quercus ilex resprouts after fire. Tree Physiol. 18: 607–614 [PubMed] [Google Scholar]
  • Flexas J., Ribas-Carbó M., Bota J., Galmés J., Henkle M., Martínez-Cañellas S. and Medrano H., 2006. Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol. 172: 73–82 [CrossRef] [PubMed] [Google Scholar]
  • Flexas J., Diaz-Espejo A., Galmés J., Kaldenhoff R., Medrano H. and Ribas-Carbó M., 2007. Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ. 30: 1284–1298 [CrossRef] [PubMed] [Google Scholar]
  • Flexas J., Ribas-Carbó M., Diaz-Espejo A., Galmés J. and Medrano H., 2008. Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ. 31: 602–621 [CrossRef] [PubMed] [Google Scholar]
  • Galmés J., Medrano H. and Flexas J., 2007. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol. 175: 81–93 [CrossRef] [PubMed] [Google Scholar]
  • Gillon J.S. and Yakir D., 2000. Internal conductance to CO2 diffusion and (CO2-O18 discrimination in C3 leaves. Plant Physiol. 123: 201–213 [CrossRef] [PubMed] [Google Scholar]
  • Hanba Y.T., Kogami H. and Terashima I., 2002. The effects of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand. Plant Cell Environ. 25: 1021–1030 [Google Scholar]
  • Harley P.C., Loreto F., Di Marco G. and Sharkey T.D., 1992. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by the analysis of the response of photosynthesis to CO2. Plant Physiol. 98: 1429–1436 [CrossRef] [PubMed] [Google Scholar]
  • Laing W.A., Ögren W.L. and Hegeman R.H., 1974. Regulation of soybean net photosynthetic CO2 fixation by the interaction of CO2, O2 and ribulose 1,5 diphosphate carboxylase. Plant Physiol. 54: 678–685 [CrossRef] [PubMed] [Google Scholar]
  • Lawlor D.W. and Tezara W., 2009. Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration processes. Ann. Bot. 103: 561–579 [CrossRef] [PubMed] [Google Scholar]
  • Loreto F., Harley P.C., Di Marco G. and Sharkey T.D., 1992. Estimation of mesophyll conductance to CO2 flux by three different methods. Plant Physiol. 98: 1437–1443 [CrossRef] [PubMed] [Google Scholar]
  • Mediavilla S., Escudero A. and Heilmeier H., 2001. Internal leaf anatomy and photosynthetic resource-use efficiency interspecific and intraspecific comparisons. Tree Physiol. 21: 251–259 [PubMed] [Google Scholar]
  • Niinemets Ü., 1999. Research review: Components of leaf dry mass per area – Thickness and density – later leaf photosynthetic capacity in reverse directions in woody plants. New Phytol. 144: 35–47 [CrossRef] [Google Scholar]
  • Niinemets Ü., Cescatti A., Rodeghiero M. and Tosens T., 2005. Leaf internal diffusion conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species. Plant Cell Environ. 28: 1552–1566 [Google Scholar]
  • Niinemets Ü., Cescatti A., Rodeghiero M. and Tosens T., 2006. Complex adjustments of photosynthetic potentials and internal diffussion conductance to current and previous light availabilities and leaf age inMediterranean evergreen species in Quercus ilex. Plant Cell Environ. 29: 1559–1578. [Google Scholar]
  • Peña-Rojas K., Aranda X. and Fleck I., 2004. Stomatal limitation to CO2 assimilation and down-regulation of photosynthesis in Quercus ilex L. resprouts under slowly-imposed drought. Tree Physiol. 24: 813–822 [PubMed] [Google Scholar]
  • Peña-Rojas K., Aranda X., Joffre R. and Fleck I., 2005. Leaf morphology, photochemistry and water status changes in resprouting Quercus ilex during drought. Funct Plant Biol. 32: 117–130 [CrossRef] [Google Scholar]
  • Reichstein M., Tenhunen J.D., Roupsard O., Ourcival J.M., Rambal S., Miglietta F., Peressotti A., Pecchiari M., Tirone G. and Valentini R., 2002. Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? Global Change Biol. 8: 999–1017 [CrossRef] [Google Scholar]
  • Roupsard O., Gross P. and Dreyer E., 1996. Limitation of photosynthetic activity by CO2 availability in the chloroplasts of oak leaves from different species and during drought. Ann. Sci. For. 53: 243–254 [CrossRef] [Google Scholar]
  • Roussel M., Dreyer E., Montpied P., Le-Provost G., Guehl J.-M. and Brendel O., 2009. The diversity of 13C isotope discrimination in a Quercus robur full-sib family is associated with differences in intrinsic water use efficiency, transpiration efficiency, and stomatal conductance. J. Exp. Bot. 60: 2419–2431 [CrossRef] [PubMed] [Google Scholar]
  • Syvertsen J.P., Lloyd J., McConchie C., Kriedemann P.E. and Farquhar G.D., 1995. On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant Cell Environ. 18: 149–157 [Google Scholar]
  • Terashima I., Miyazawa S.-I. and Hanba Y.T., 2001. Why are sun leaves thicker than shade leaves? Consideration based on analysis of CO2 diffusion in the leaf. J. Plant Res. 114: 93–105 [CrossRef] [Google Scholar]
  • Terashima I. and Ono K., 2002. Effects of HgCl2 on CO2 dependence of leaf photosynthesis: evidence indicating involvement of aquaporins in CO2 diffusion across the plasma membrane. Plant Cell Physiol. 43: 70–78 [CrossRef] [PubMed] [Google Scholar]
  • Vitousek P.M., Field C.B. and Matason P.A., 1990. Variation in foliar δ13C in Hawaiian Metrosideros polymorpha: a case of internal resistance? Oecologia 84: 362–370 [PubMed] [Google Scholar]
  • Warren C.R. and Adams M.A., 2006. Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and nitrogen use in photosynthesis. Plant Cell Environ. 19: 192–201 [Google Scholar]
  • Wong S.C., Cowan I.R. and Farquhar G.D., 1979. Stomatal conductance correlates with photosynthetic capacity. Nature 282: 424–426 [CrossRef] [Google Scholar]