Free Access
Ann. For. Sci.
Volume 67, Number 3, May 2010
Article Number 307
Number of page(s) 13
Section Original articles
Published online 18 February 2010
  • Álvarez-González J.G., Castedo-Dorado F., Ruiz González A.D., López Sánchez C.A. and Gadow K.V., 2004. A two-step mortality model for even-aged stands of Pinus radiata D. Don in Galicia (Northwestern Spain). Ann. For. Sci. 61: 439–448 [Google Scholar]
  • Álvarez-González J.G., Ruiz González A.D., Rodríguez Soalleiro R. and Barrio Anta M., 2005. Ecoregional site index models for Pinus pinaster in Galicia (northwestern Spain). Ann. For. Sci. 62: 115–127 [CrossRef] [EDP Sciences] [Google Scholar]
  • Amateis R.L., 2000. Modeling response to thinning in loblolly pine plantations. South. J. Appl. For. 24: 17–22 [Google Scholar]
  • Badoux E., 1983. Ertragstafeln Buche. Eidg. Amt. Forstl. Versuchswes., 3rd ed. [Google Scholar]
  • Bailey R.L. and Clutter J.L., 1974. Base-age invariant polymorphic site curves. For. Sci. 20: 155–159 [Google Scholar]
  • Barrio Anta M., Castedo Dorado F., Diéguez-Aranda U., Álvarez González, J.G., Parresol B.R. and Rodríguez R., 2006. Development of a basal area growth system for maritime pine in northwestern Spain using the generalized algebraic difference approach. Can. J. For. Res. 36: 1461–1474 [CrossRef] [Google Scholar]
  • Bertalanffy L.V., 1957. Quantitative laws in metabolism and growth. Q. Rev. Biol. 32: 217–231 [Google Scholar]
  • Bolte A., Czajkowski T. and Kompa T., 2007. The north-eastern distribution range of European beech – a review. Forestry 80: 413–429 [CrossRef] [Google Scholar]
  • Castedo-Dorado F., Diéguez-Aranda U. and Álvarez-González J.G., 2007. A growth model for Pinus radiata D. Don stands in north-western Spain. Ann. For. Sci. 64: 453–465 [Google Scholar]
  • Castedo-Dorado F., Diéguez-Aranda U., Barrio Anta M. and Álvarez-González J.G., 2007. Modelling stand basal area growth for radiata pine plantations in Northwestern Spain using the GADA. Ann. For. Sci. 64: 609–619 [CrossRef] [EDP Sciences] [Google Scholar]
  • Cieszewski C.J., 2002. Comparing fixed- and variable-base-age site equations having single versus multiple asymptotes. For. Sci. 48: 7–23 [Google Scholar]
  • Cieszewski C.J., 2003. Developing a well-behaved dynamic site equation using a modified Hossfeld IV function Y3 = (axm)/ (c + xm_1), a simplified mixed-model and scant subalpine fir data. For. Sci. 49: 539–554 [Google Scholar]
  • Cieszewski C.J. and Bailey R.L., 2000. Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes. For. Sci. 46: 116–126 [Google Scholar]
  • Cieszewski C.J., Harrison M. and Martin S.W, 2000. Practical methods for estimating non-biased parameters in self-referencing growth and yield models. University of Georgia, PMRC-TR 2000-7. [Google Scholar]
  • Clutter J.L. and Jones E.P., 1980. Prediction of growth after thinning in oldfield slash pine plantations, USDA For. Serv. Pap. SE-217. [Google Scholar]
  • Clutter J.L., Fortson J.C., Pienaar L.V., Brister G.H. and Bailey R.L., 1983. Timber management – A quantitative approach, John Wiley & Sons, 333 p. [Google Scholar]
  • Diéguez-Aranda U., Castedo-Dorado F., Álvarez González J.G. and Rodríguez-Soalleiro R., 2005. Modelling mortality of Scots pine (Pinus sylvestris L.) plantations in the northwest of Spain. Eur. J. For. Res. 124: 143–153 [CrossRef] [Google Scholar]
  • Diéguez-Aranda U., Castedo F., Álvarez González J.G. and Rojo A., 2006. Dynamic growth model for Scots pine (Pinus sylvestris L.) plantations in Galicia (north-western Spain). Ecol. Model. 191: 225–242 [CrossRef] [Google Scholar]
  • Gadow K.V., 2006. Forsteinrichtung – Adaptive Steuerung und Mehrpfadprinzip. Universitätsdrucke Göttingen. [Google Scholar]
  • Gadow K.V. and Pukkala T., 2008. Designing Green Landscapes. Managing Forest Ecosystems Vol. 15, Springer Verlag, Dordrecht. [Google Scholar]
  • García O., 1988. Growth modelling – a (re)view. N. Z. J. For. Sci. 33 (3): 14–17. [Google Scholar]
  • García O., 1994. The State-Space Approach in Growth Modeling. Can. J. For. Res. 24: 1894–1903 [CrossRef] [Google Scholar]
  • Gregoire T.G., Schabenberger O. and Barrett J.P., 1995. Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements. Can. J. For. Res. 25: 137–156. [CrossRef] [Google Scholar]
  • Hallenbarter D., Hasenauer H. and Zingg A., 2005. Validierung des Waldwachstumsmodells MOSES für Schweizer Wälder. Schweiz. Z. Forstwes. 156, 5: 149–156. [CrossRef] [Google Scholar]
  • Hasenauer H., Burkhart H.E. and Amateis R.L., 1997. Basal area development in thinned and unthinned loblolly pine plantations. Can. J. For. Res. 27: 265–271 [CrossRef] [Google Scholar]
  • Huang S., Yang Y. and Wang Y., 2003. A critical look at procedures for validating growth and yield models. In: Amaro A., Reed D. and Soares P. (Eds.). Modelling forest systems. CAB International, Wallingford, UK, pp. 271–293. [Google Scholar]
  • Hynynen J., 1995. Predicting the growth response to thinning for Scots pine stands using individual-tree growth models. Silva Fenn. 29: 225–247 [Google Scholar]
  • Knoebel B.R., Burkhart H.E. and Beck D.E., 1986. A growth and yield model for thinned stands of yellow-poplar. For. Sci. Monogr. 27. [Google Scholar]
  • Korf V., 1939. Pøíspìvek k matematické definici vzrùstového zákona lesních porostù. Lesnická práce 18: 339–356 [Google Scholar]
  • Kozak A. and Kozak R., 2003. Does cross validation provide additional information in the evaluation of regression models? Can J. For. Res. 33: 976-987 [CrossRef] [Google Scholar]
  • Lindstrom M. and Bates D., 1990. Nonlinear mixed effects models for repeated measures data. Biometrics 46: 673–687 [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Monserud R.A., 1984. Height growth and site-index curves for inland Douglas-fir based on stem analysis data and forest habitat type. For. Sci. 30: 943–965 [Google Scholar]
  • Nagel J., Albert M. and Schmidt M., 2002. Das waldbauliche Prognose- und Entscheidungsmodell BWINPro 6.1. Forst Holz 57 (15/16): 486–493. [Google Scholar]
  • Nord-Larsen T. and Johannsen V.K., 2007. A state-space approach to stand growth modelling of European beech. Ann. For. Sci. 64: 365–374 [CrossRef] [EDP Sciences] [Google Scholar]
  • Paulsen J.C., 1795. Praktische Anweisung zum Forstwesen, Detmold. [Google Scholar]
  • Pienaar L.V. and Shiver B.D., 1984. An analysis and models of basal area growth in 45-year-old unthinned and thinned slash pine plantation plots. For. Sci. 30: 933–942 [Google Scholar]
  • Pienaar L.V., Shiver B.D. and Grider G.E., 1985. Predicting basal area growth in thinned slash pine plantations. For. Sci. 31: 731–741 [Google Scholar]
  • Pretzsch H., Biber P., Ïurský J., Gadow K.V., Hasenauer H., Kändler G., Kenk G., Kublin E., Nagel J., Pukkala T., Skovsgaard J.P., Sodtke R. and Sterba, H., 2002. Recommendations for standardized documentation and further development of forest growth simulators. Forstw. Cbl. 121 (3): 138–151. [CrossRef] [Google Scholar]
  • Rennolls K. and Peace A., 1986. Flow models of mortality and yield for unthinned forest stands. Forestry 59: 47–58 [CrossRef] [Google Scholar]
  • Reynolds M.R., 1984. Estimating the error in model predictions. For. Sci. 30: 454–468 [Google Scholar]
  • SAEFL/WSL, 2005. Forest Report 2005 – Facts and Figures about the Condition of Swiss Forests. Swiss Agency for the Environment, Forest and Landscape and Swiss Federal Research Institute, Berne/Birmensdorf. [Google Scholar]
  • SAS Institute Inc., 2004. SAS/ETS1 9.1.2. User’s Guide. SAS Institute Inc., Cary, NC. [Google Scholar]
  • Schmid S., Zingg A., Biber, P. and Bugmann H., 2006. Evaluation of the forest growth model SILVA along an elevational gradient in Switzerland. Eur. J. For. Res. 125: 43–55 [CrossRef] [Google Scholar]
  • Sharma M., Smith M., Burkhart H.E. and Amateis R.L., 2006. Modeling the impact of thinning on height development of dominant and codominant trees, Ann. For. Sci. 63: 349–354 [CrossRef] [EDP Sciences] [Google Scholar]
  • Sterba H. and Monserud R.A., 1997. Applicability of the forest stand growth simulator Prognaus for the Austrian part of the Bohemian Massif. Ecol. Model. 98: 23–34 [CrossRef] [Google Scholar]
  • Vanclay J.K., 1995. Growth models for tropical forests: a synthesis of models and methods. For. Sci. 41: 7–42 [Google Scholar]
  • Woollons R.C., 1998. Even-aged stand mortality estimation through a two-step regression process, For. Ecol. Manage. 105: 189–195 [CrossRef] [Google Scholar]
  • Yang Y., Monserud R.A. and Huang S., 2004. An evaluation of diagnostic tests and their roles in validating forest biometrics models. Can. J. For. Res. 34: 619–629 [CrossRef] [Google Scholar]
  • Zarnoch S.J., Feduccia D.P., Baldwin V.C. and Dell T.R., 1991. Growth and yield predictions for thinned and unthinned slash pine plantations on cutover sites in the West Gulf region. USDA Forest Service Res. Pap. SO-264. [Google Scholar]