Free Access
Ann. For. Sci.
Volume 67, Number 7, October-November 2010
Article Number 703
Number of page(s) 10
Published online 19 August 2010
  • Askew G.R., and El-Kassaby Y.A., 1994. Estimation of relationship coefficients among progeny derived from wind pollinated orchard seeds. Theor. Appl. Genet. 88: 267–272. [PubMed] [Google Scholar]
  • Borralho N.M.G., 1994. Heterogeneous selfing rates and dominance effects in estimating heritabilities from open-pollinated progeny. Can. J. For. Res. 24: 1079–1082. [CrossRef] [Google Scholar]
  • Cremer E., Liepelt S., Sebastiani F., Buonamici A., Michalczyk I.M., Ziegenhagen B., and Vendramin G.G., 2006. Identification and characterization of nuclear microsatellite loci in Abies alba Mill. Mol. Ecol. Notes 6: 374–376. [CrossRef] [Google Scholar]
  • Doerksen T.K., and Herbinger C.M., 2008. Male reproductive success and pedigree error in red spruce open-pollinated and polycross mating systems. Can. J. For. Res. 38: 1742–1749. [CrossRef] [Google Scholar]
  • Falconer D.S., 1989. Introduction to quantitative genetics. 3rd ed. Harlow, Essex, UK: Longman Scientific & Technical, 438 p. [Google Scholar]
  • Gaspar M., de-Lucas A., González-Martínez S.C., Paiva J., Hidalgo E., Louzada J., Almeida M.H., and Alia R., 2009. Use of molecular markers for estimating breeding parameters: a case study in a maritime pine progeny trial. Tree Genet. Genomes 5: 609–616. [CrossRef] [Google Scholar]
  • Gilmour A.R., Gogel B.J., Cullis B.R., and Thompson R., 2006. ASReml User Guide Release 2.0, VSN International Ltd, Hemel Hempstead, HP11ES, UK. [Google Scholar]
  • Goto S., Watanabe A., Miyahara F., and Mori Y., 2005. Reproductive success of pollen derived from selected and non-selected sources and its impact on the performance of crops in a nematode-resistant Japanese black pine seed orchard. Silvae Genet. 54: 69–76. [Google Scholar]
  • Gömöry D., Bruchanik R., and Longauer R., 2003. Fertility variation and flowering asynchrony in Pinus sylvestris: consequences for the genetic structure of progeny in seed orchards. For. Ecol. Manage. 174: 117–126. [CrossRef] [Google Scholar]
  • Hansen O.K., Vendramin G.G., Sebastiani F., and Edwards K.J., 2005. Development of microsatellite markers in Abies nordmanniana (Stev.) Spach and cross-species amplification in the Abies genus. Mol. Ecol. Notes 5: 784–787. [CrossRef] [Google Scholar]
  • Hansen O.K., and Kjaer E.D., 2006. Paternity analysis with microsatellites in a Danish Abies nordmanniana clonal seed orchard reveals dysfunctions. Can. J. For. Res. 36: 1054–1058. [CrossRef] [Google Scholar]
  • Hansen O.K., and Nielsen U.B., 2008. Crossing success in Abies nordmanniana following artificial pollination with a pollen mixture of A. nordmanniana and A. alba. Silvae Genet. 57: 70–76. [Google Scholar]
  • Hansen O.K., 2008. Mating patterns, genetic composition and diversity levels in two seed orchards with few clones – Impact on planting crop. For. Ecol. Manage. 256: 1167–1177. [CrossRef] [Google Scholar]
  • Kalinowski S.T., Taper M.L., and Marshall T.C., 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16: 1099–1106. [CrossRef] [Google Scholar]
  • Kjær E.D., 1996. Estimation of effective population number in a Picea abies (Karst.) seed orchard based on flower assessment. Scan. J. For. Res. 11: 111–121. [CrossRef] [Google Scholar]
  • Kumar S., and Richardson T.E., 2005. Inferring relatedness and heritability using molecular markers in radiata pine. Mol. Breed. 15: 55–64. [CrossRef] [Google Scholar]
  • Kumar S., Gerber S., Richardson T.E., and Gea L., 2007. Testing for unequal paternal contributions using nuclear and chloroplast SSR markers in polycross families of radiata pine. Tree Genet. Genomes 3: 207–214. [CrossRef] [Google Scholar]
  • Lindgren D. and Matheson A.C., 1986. An algorithm for increasing the genetic quality of seed from seed orchards by using the better clones in higher proportions. Silvae Genet. 35: 173–177. [Google Scholar]
  • Lynch M. and Walsh B., 1998. Genetics and analysis of quantitative traits. Sinauer Associates Inc., Sunderland, 980 p. [Google Scholar]
  • Marshall T.C., Slate J., Kruuk L.E.B., and Pemberton J.M., 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7: 639–655. [CrossRef] [PubMed] [Google Scholar]
  • Moriguchi Y., Taira H., Tani N., and Tsumura Y., 2004. Variation of paternal contribution in a seed orchard of Cryptomeria japonica determined using microsatellite markers. Can. J. For. Res. 34: 1683–1690. [CrossRef] [Google Scholar]
  • Moriguchi Y., Tani N., Itoo S., Kanehira F., Tanaka K., Yomogida H., Taira H., and Tsumura Y., 2005. Gene flow and mating system in five Cryptomeria japonica D. Don seed orchards as revealed by analysis of microsatellite markers. Tree Genet. Genomes 1: 174–183. [Google Scholar]
  • Moriguchi Y., Tsuchiya S., Iwata H., Itoo S., Tani N., Taira H., and Tsumura Y., 2007. Factors influencing male reproductive success in a Cryptomeria japonica seed orchard revealed by microsatellite marker analysis. Silvae Genet. 56: 207–214. [Google Scholar]
  • Namkoong G., 1966. Inbreeding effects on estimation of genetic additive variance. For. Sci. 12: 8–13. [Google Scholar]
  • Nielsen U.B., Kirkeby-Thomsen A., and Roulund H., 2002. Genetic variation in resistance to Dreyfusia nordmannianae Eckst. infestations in Abies nordmanniana (Stev.) Spach. For. Ecol. Manage. 165: 271–283. [CrossRef] [Google Scholar]
  • Nielsen U.B., and Chastagner G.A., 2005. Genetic variation in postharvest needle retention among Nordmann fir families and grafted clones. Scan. J. For. Res. 20: 304–312. [CrossRef] [Google Scholar]
  • Nielsen U.B., 2007. Genetic variation in characters important for noble fir greenery production. Scan. J. For. Res. 22: 99–109. [CrossRef] [Google Scholar]
  • Patterson H.D., and Thompson R., 1971. Recovery of inter-block information when block sizes are unequal. Biometrika 58: 545–554. [CrossRef] [MathSciNet] [Google Scholar]
  • Saito Y., Lian C.L., Hogetsu T., and Ide Y., 2005. Development and characterization of microsatellite markers in Abies firma and interspecific amplification in other Japanese Abies species. Mol. Ecol. Notes 5: 234–235. [CrossRef] [Google Scholar]
  • Searle R.S., 1995. An overview of variance component estimation. Metrika 42: 215–230. [CrossRef] [MathSciNet] [Google Scholar]
  • Sirikul W., Wellendorf H., and Granhof J., 1991. Provenance × site interaction in cone settings of Pinus caribaea var. Hondurensis in Thailand. For. Tree Improv. 24: 1–29. [Google Scholar]
  • Sorensen F.C., and White T.L., 1988. Effect of Natural Inbreeding on Variance Structure in Tests of Wind-Pollination Douglas-Fir Progenies. For. Sci. 34: 102–118. [Google Scholar]
  • Squillace A.E., 1974. Average genetic correlations among offspring from open- pollinated forest trees. Silvae Genet. 23: 149–156. [Google Scholar]
  • Surles S.E., Arnold J., Schnabel A., Hamrick J.L., and Bongarten B.C., 1990. Genetic Relatedness in Open-Pollinated Families of 2 Leguminous Tree Species, Robinia-Pseudoacacia l and Gleditsia-Triacanthos l. Theor. Appl. Genet. 80: 49–56. [PubMed] [Google Scholar]
  • Wright J.W., 1976. Introduction to forest genetics, Academic Press, London, 463 p. [Google Scholar]
  • Wu H.X., and Matheson A.C., 2004. General and specific combining ability from partial diallels of radiata pine: implications for utility of SCA in breeding and deployment populations. Theor. Appl. Genet. 108: 1503–1512. [CrossRef] [PubMed] [Google Scholar]