Free Access
Issue
Ann. For. Sci.
Volume 67, Number 8, December 2010
Article Number 810
Number of page(s) 10
Section Original articles
DOI https://doi.org/10.1051/forest/2010046
Published online 28 October 2010
  • Adame P., Del Río M., and Cañellas I., 2008a. A mixed nonlinear height-diameter model for pyrenean oak (Quercus pyrenaica Willd.). For. Ecol. Manage. 256: 88–98. [CrossRef] [Google Scholar]
  • Adame P., Hynynen J., Cañellas I., and Del Río M., 2008b. Individual-tree diameter growth model for rebollo oak (Quercus pyrenaica Willd.) coppices. For. Ecol. Manage. 255: 1011–1022. [CrossRef] [Google Scholar]
  • Alenius V., Hökkä H., Salminen H., and Jutras S., 2003. Evaluating estimation methods for logistic regression in modelling individual-tree mortality. In: Amaro A., Reed D., and Soares P. (Eds.), Modelling forest systems, CAB International, Wallingford, pp. 225–236. [Google Scholar]
  • Álvarez González J.G., Castedo Dorado F., Ruíz González A.D., López Sánchez C.A., and Von Gadow K., 2004. A two-step mortality model for even-aged stands of Pinus radiata D. Don in Galicia (Northwestern Spain). Ann. For. Sci. 61: 439–448. [Google Scholar]
  • Amateis R.L., Burkhart H.E., and Jiping L., 1997. Modeling survival in juvenile and mature loblolly pine plantations. For. Ecol. Manage. 90: 51–58. [CrossRef] [Google Scholar]
  • Avila O. and Burkhart H.E., 1992. Modeling survival of loblolly pine trees in thinned and unthinned plantations. Can. J. For. Res. 22: 1878–1882. [CrossRef] [Google Scholar]
  • Bigler C. and Bugmann H., 2003. Growth-dependent tree mortality models based on tree rings. Can. J. For. Res. 33: 210–221. [CrossRef] [Google Scholar]
  • Bravo-Oviedo A., Sterba H., del Río M., and Bravo F., 2006. Competition-induced mortality for Mediterranean Pinus pinaster Ait. and P. sylvestris L. For. Ecol. Manage. 222: 88–98. [CrossRef] [Google Scholar]
  • Bravo F., Del Río M., and Del Peso C., 2002. El Inventario Forestal Nacional. Elemento clave para la gestión forestal sostenible, Fundación General de la Universidad de Valladolid, 191 p. [Google Scholar]
  • Cañellas I., Del Río M., Roig S., and Montero G., 2004. Growth response to thinning in Quercus pyrenaica Willd. coppice stands in Spanish central mountain. Ann. For. Sci. 61: 243–250. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cannel M.G.R., Rothery P., and Ford E.D., 1984. Competition within stands of Picea sitchensis and Pinus contorta. Ann. Bot. 53: 349–362. [Google Scholar]
  • Crow G.R. and Hicks R.R., 1990. Predicting mortality in mixed oak stands following spring insect defoliation. For. Sci. 36: 831–841. [Google Scholar]
  • Davies S.J., 2001. Tree mortality and growth in 11 sympatric Macaranga species in Borneo. Ecology 82: 920–932. [Google Scholar]
  • DGCN, 2005. Anuario de Estadísticas Forestales, Dirección General de Conservación de la Naturaleza, Ministerio de Medio Ambiente, Madrid. [Google Scholar]
  • Diéguez-Aranda U., Castedo Dorado F., Álvarez González J.G., and Rodríguez-Soalleiro R., 2005. Modelling mortality of Scots pine (Pinus sylvestris L.) plantations in the northwest of Spain. Eur. J. Forest. Res. 124: 143–153. [CrossRef] [Google Scholar]
  • Dobbertin M. and Biging G.S., 1998. Using the non-parametric classifier CART to model forest tree mortality. For. Sci. 44: 507–516. [Google Scholar]
  • Dobbertin M. and Brang P., 2001. Crown defoliation improves tree mortality models. For. Ecol. Manage. 141: 271–284. [CrossRef] [Google Scholar]
  • Drobyshev I., Dobrovolsky A., and Neshataev V., 2009. Tree mortality in a mixed deciduous forest in Northwestern Russia over 22 years. Ann. For. Sci. 66: 411. [CrossRef] [EDP Sciences] [Google Scholar]
  • Drobyshev I., Niklasson M., Linderson H., Sonesson K., Karlsson M., Nilsson S.G., and Lanner J., 2008. Lifespan and mortality of old oaks – combining empirical and modelling approaches to support their management in Southern Sweden. Ann. For. Sci. 65: 401. [CrossRef] [EDP Sciences] [Google Scholar]
  • Eid T. and Tuhus E., 2001. Models for individual tree mortality in Norway. For. Ecol. Manage. 154: 69–84. [CrossRef] [Google Scholar]
  • Elena Roselló R., 1997. Clasificación Biogeoclimática de España Peninsular y Balear., MAPA, Madrid, 446 p. [Google Scholar]
  • Fox J.C., Ades P.K., and Bi H., 2001. Stochastic structure and individual-tree growth models. For. Ecol. Manage. 154: 261–276. [CrossRef] [Google Scholar]
  • Franklin J.F., Shugart H.H., and Harmon M.E., 1987. Tree death as an ecological process. Bioscience 37: 550–556. [CrossRef] [Google Scholar]
  • Fridman J. and Stahl G., 2001. A three-step approach for modelling tree mortality in Swedish Forests. Scand. J. For. Res. 16: 455–466. [CrossRef] [Google Scholar]
  • Hamilton D.A., 1986. A logistic model of mortality in thinned and unthinned mixed conifer stands of Northern Idaho. For. Sci. 32: 989–1000. [Google Scholar]
  • Hasenauer H., Merkl D., and Weingartner M., 2001. Estimating tree mortality in Norway spruce stands with neural networks. Adv. Environ. Res. 5: 405–414. [CrossRef] [Google Scholar]
  • Hawkes C., 2000. Woody plant mortality algorithms: description, problems and progress. Ecol. model. 126: 225–248. [CrossRef] [Google Scholar]
  • Jutras S., Hökkä H., Alenius V., and Salminen H., 2003. Modeling mortality of individual trees in drained peatland sites in Finland. Silva Fenn. 37: 235–251. [Google Scholar]
  • Karlsson K. and Norell L., 2005. Modelling survival probability of individual trees in Norway spruce stands under different thinning regimes. Can. J. For. Res. 35: 113–121. [CrossRef] [Google Scholar]
  • Laard A. and Akça A., 1997. Forest mensuration, Cuvillier Verlag, Göttingen. [Google Scholar]
  • Mabvurira D. and Miina J., 2002. Individual-tree growth and mortality models for Eucalyptus grandis (Hill.) Maiden plantations in Zimbabwe. For. Ecol. Manage. 161: 231–245. [CrossRef] [Google Scholar]
  • MacFarlane D.W., Greene E.J., Brunner A., and Burkhart H.E., 2002. Predicting survival and growth rates for individual loblolly pine trees from light capture estimates. Can. J. For. Res. 32: 1970–1983. [CrossRef] [Google Scholar]
  • Mailly D., Gaudreault M., Picher G., Auger I., and Pothier D., 2009. A comparison of mortality rates between top height trees and average site trees. Ann. For. Sci. 66: 202. [CrossRef] [EDP Sciences] [Google Scholar]
  • McCullagh P. and Nelder J.A., 1989. Generalized linear models, 2nd edition, Chapman a Hall/CRC, 511 p. [Google Scholar]
  • McCulloch C.E. and Searle S.R., 2001. Generalized, linear, and mixed models, Wiley, New York, 358 p. [Google Scholar]
  • Meng Q., Cieszewski C.J., Lowe R.C., and Zasada M., 2003. A three-step approach to model tree mortality in the State of Georgia. Fifth Annual Forest Inventory and Analysis Symposium, United States Department of Agriculture. Forest Service, New Orleans, Louisiana, pp. 91–96. [Google Scholar]
  • Monserud R.A. and Sterba H., 1999. Modeling individual tree mortality for Austrian forest species. For. Ecol. Manage. 113: 109–123. [CrossRef] [Google Scholar]
  • Pedersen S.M., 2007. Models of individual tree mortality for trembling aspen, lodgepole pine, hybrid spruce and subalpine fir in northwestern British Columbia, Examensarbeten, Institutionen för skongens ekologi och skötsel, Umea, 61 p. [Google Scholar]
  • Peet R.K. and Christensen N.L., 1987. Compettion and tree death. Bioscience 37: 586–595. [CrossRef] [Google Scholar]
  • Roig S., del Río M., Ruíz-Peinado R., and Cañellas I., 2007. Tipología dasométrica de los rebollares (Quercus pyrenaica Willd.) de la zona centro de la Península IbéricaLos sistemas forrajeros: entre la producción y el paisaje, Actas de la XLVI Reunión Científica de la Sociedad Española para el Estudio de los Pastos, Vitoria, pp. 535–542. [Google Scholar]
  • Sánchez O., Sánchez F., and Carretero M.P., 1999. Modelos y Cartografía de Estimaciones Climáticas Termopluviométricas para la España Peninsular, INIA, Madrid, 192 p. [Google Scholar]
  • SAS/STAT, 2000. SAS/STAT user’s guide, version 8, SAS Institute Inc., Cary, N.C. [Google Scholar]
  • SAS/STAT, 2001. The SAS System for Windows Release 6.12, SAS Institute Inc., Cary, N.C. [Google Scholar]
  • Schröder J., Rhöle H., Gerold D., and Münder K., 2007. Modeling individual-tree growth in stands under forest conversion in East Germany. Eur. J. For. Res. 126: 459–472. [CrossRef] [Google Scholar]
  • Shifley S.R., Fan Z., Kabrick J.M., and Jensen R.G., 2006. Oak mortality risk factors and mortality estimation. For. Ecol. Manage. 229: 16–26. [CrossRef] [Google Scholar]
  • Smith R.G.B. and Nichols J.D., 2005. Patterns of basal area increment, mortality and recruitment were related to logging intensity in subtropical rainforest in Australia over 35 years. For. Ecol. Manage. 218: 319–328. [CrossRef] [Google Scholar]
  • Trasobares A., Pukkala T., and Miina J., 2004a. Growth and yield model for uneven-aged mixtures of Pinus sylvestris L. and Pinus nigra Arn. in Catalonia, north-east Spain. Ann. For. Sci. 61: 9–24. [CrossRef] [EDP Sciences] [Google Scholar]
  • Trasobares A., Tomé M., and Miina J., 2004b. Growth and yield model for Pinus halepensis Mill. in Catalonia, north-east Spain. For. Ecol. Manage. 203: 49–62. [CrossRef] [Google Scholar]
  • Vanclay J.K., 1994. Modelling forest growth and yield – Application to mixed tropical forests, CAB Int., UK, 312 p. [Google Scholar]
  • Vanclay J.K., 2003. Growth modelling and yield predicion for sustainable forest management. The Malaysian Forester 66: 58–69. [Google Scholar]
  • Walter H. and Lieth H., 1960. Klimdiagramme-Weltatlas, Jena. [Google Scholar]
  • Waring R.H., 1987. Characteristics of trees predisposed to die. Bioscience 37: 569–574. [CrossRef] [Google Scholar]
  • Weingartner M., Merkl D., and Hasenauer H., 2000. Improving tree mortality predictions of Norway Spruce stands with neural networks. Symposium on Integration in Environmental Information Systems, Zell am See, Austria. [Google Scholar]
  • Yang Y., Titus S.J., and Huang S., 2003. Modeling individual tree mortality for white spruce in Alberta. Ecol. model. 163: 209–222. [CrossRef] [Google Scholar]
  • Yao X., Titus S.J., and MacDonald S.E., 2001. A generalized logistic model of individual tree mortality for aspen, white spruce, and lodgepole pine in Alberta mixedwood forests. Can. J. For. Res. 31: 283–291. [CrossRef] [Google Scholar]
  • Zens M.S. and Peart D.R., 2003. Dealing with death data: individual hazard, mortality, and bias. Trends Ecol. Evol. 18: 366–373. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Zhang S., Amateis R.L., and Burkhart H., 1997. Constraining individual tree diameter increment and survival models for loblolly pine plantations. For. Sci. 43: 414–423. [Google Scholar]
  • Zhao D., Borders B.E., Wang M., and Kane M., 2007. Modeling mortality of second-rotation loblolly pine plantations in the Piedmont/Upper Coastal Plain and Lower Coastal Plain of the southern United States. For. Ecol. Manage. 252: 132–143. [CrossRef] [Google Scholar]