Free Access
Issue
Ann. For. Sci.
Volume 67, Number 8, December 2010
Article Number 809
Number of page(s) 8
Section Original articles
DOI https://doi.org/10.1051/forest/2010045
Published online 28 October 2010
  • Arend M. and Fromm J., 2007. Seasonal change in the drought response of wood cell development in poplar. Tree Physiol. 27: 985–992. [PubMed] [Google Scholar]
  • Bréda N., Huc R., Granier A., and Dreyer E., 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63: 625–644. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cavender-Bares J. and Holbrook N.M., 2001. Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with, contrasting habitats. Plant Cell Environ. 24: 1243–1256. [Google Scholar]
  • Chaves M.M., Maroco J.P., and Pereira J.S., 2003. Understanding plant responses to drought – From genes to the whole plant. Funct. Plant Biol. 30: 239–264. [CrossRef] [PubMed] [Google Scholar]
  • Ciais P., Reichstein M., Viovy N., Granier A., Ogee J., Allard V., Aubinet M., Buchmann N., Bernhofer C., Carrara A., Chevallier F., De Noblet N., Friend A.D.,Friedlingstein P., Grunwald T., Heinesch B., Keronen P., Knohl A., Krinner G., Loustau D., Manca G., Matteucci G., Miglietta F., Ourcival J.M., Papale D., Pilegaard K., Rambal S., Seufert G., Soussana J.F., Sanz M.J., Schulze E.D., Vesala T., Valentini R., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529–533. [CrossRef] [PubMed] [Google Scholar]
  • Corcuera L., Camarero J.J., and Gil-Pelegrin E., 2004. Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees 18: 83–92. [Google Scholar]
  • Corcuera L., Camarero J.J., Siso S., and Gil-Pelegrin E., 2006. Radial-growth and wood-anatomical changes in overaged Quercus pyrenaica coppice stands: functional responses in a new Mediterranean landscape. Trees 20: 91–98. [CrossRef] [Google Scholar]
  • Demmig-Adams B. and Adams W.W., 2006. Photoprotection in an ecological context: The remarkable complexity of thermal energy dissipation. New Phytol. 172: 11–21. [CrossRef] [PubMed] [Google Scholar]
  • Drew D.M., Downes G.M., O’Grady A.P., Read J., and Worledge D., 2009. High resolution temporal variation in wood properties in irrigated and non-irrigated Eucalyptus globulus. Ann. For. Sci. 66: 406. [CrossRef] [EDP Sciences] [Google Scholar]
  • Eilmann B., Weber P., Rigling A., and Eckstein D., 2006. Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd. to drought years at a xeric site in Valais, Switzerland. Dendrochronologia 23: 121–132. [CrossRef] [Google Scholar]
  • Farquhar G.D.,Ehleringer J.R., and Hubick K.T., 1989. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 503–537. [Google Scholar]
  • Ferrio J.P., Florit A., Vega A., Serrano L., and Voltas J., 2003. Delta 13C and tree-ring width reflect different drought responses in Quercus ilex and Pinus halepensis. Oecologia 137: 512–518. [CrossRef] [PubMed] [Google Scholar]
  • Fonti P., von Arx G.,Garcia-Gonzalez I., Eilmann B.,Sass-Klaassen U., Gartner H., and Eckstein D., 2010. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 185: 42–53. [CrossRef] [PubMed] [Google Scholar]
  • Galle A., Haldimann P., and Feller U., 2007. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery. New Phytol. 174: 799–810. [CrossRef] [PubMed] [Google Scholar]
  • Gonzalez I.G. and Eckstein D., 2003. Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol 23: 497–504. [PubMed] [Google Scholar]
  • Gruber A., Zimmermann J., Wieser G., and Oberhuber W., 2009. Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone. Ann. For. Sci. 66: 503. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Hacke U.G. and Sperry J.S., 2001. Functional and ecological xylem anatomy. Perspect. Plant Ecol. Evol. Syst. 4: 97–115. [CrossRef] [Google Scholar]
  • Haldimann P., Galle A., and Feller U., 2008. Impact of an exceptionally hot dry summer on photosynthetic traits in oak (Quercus pubescens) leaves. Tree Physiol. 28: 785–795. [PubMed] [Google Scholar]
  • Harlow B.A., Marshall J.D., and Robinson A.P., 2006. A multi-species comparison of δ13C from whole wood, extractive-free wood and holocellulose. Tree Physiol. 26: 767–774. [PubMed] [Google Scholar]
  • Helle G. and Schleser G.H., 2004. Beyond CO2-fixation by Rubisco – an interpretation of 13C/12C variations in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant Cell Environ. 27: 367–380. [Google Scholar]
  • Holbrook N.M., Ahrens E.T., Burns M.J., and Zwieniecki M.A., 2001. In vivo observation of cavitation and embolism repair using magnetic resonance imaging. Plant Physiol. 126: 27–31. [CrossRef] [PubMed] [Google Scholar]
  • IPCC, 2007. Technical Report, Cambridge University Press, Cambridge and New York. [Google Scholar]
  • Kagawa A., Sugimoto A., and Maximov T.C., 2006. 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant Cell Environ. 29: 1571–1584. [CrossRef] [PubMed] [Google Scholar]
  • Keel S.G., Siegwolf R.T.W., Jaggi M., and Korner C., 2007. Rapid mixing between old and new C pools in the canopy of mature forest trees. Plant Cell Environ 30: 963–972. [CrossRef] [PubMed] [Google Scholar]
  • Korol R.L.,Kirschbaum M.U.F.,Farquhar G.D., and Jeffreys M., 1999. Effects of water status and soil fertility on the C-isotope signature in Pinus radiata. Tree Physiol. 19: 551–562. [PubMed] [Google Scholar]
  • Kozlowski T.T. and Pallardy S.G., 2002. Acclimation and adaptive responses of woody plants to environmental stresses. Bot. Rev. 68: 270–334. [CrossRef] [Google Scholar]
  • Leavitt S.W. and Long A., 1986. Stable-carbon isotope variability in tree foliage and wood. Ecology 67: 1002–1010. [CrossRef] [Google Scholar]
  • Lebourgeois F., Cousseau G., and Ducos Y., 2004. Climate-tree-growth relationships of Quercus petraea Mill. stand in the Forest of Berce (“Futaie des Clos”, Sarthe, France). Ann For Sci 61: 361–372. [CrossRef] [EDP Sciences] [Google Scholar]
  • Livingston N.J. and Spittlehouse D.L., 1996. Carbon isotope fractionation in tree ring early and late wood in relation to intra-growing season water balance. Plant Cell Environ. 19: 768–774. [Google Scholar]
  • Loader N.J., Robertson I., and McCarroll D., 2003. Comparison of stable carbon isotope ratios in the whole wood, cellulose and lignin of oak tree-rings. Palaeogeogr. Palaeoclimatol. Palaeoecol. 196: 395–407. [CrossRef] [Google Scholar]
  • Logullo M.A., Salleo S., Piaceri E.C., and Rosso R., 1995. Relations between Vulnerability to Xylem Embolism and Xylem Conduit Dimensions in Young Trees of Quercus cerris. Plant Cell Environ. 18: 661–669. [Google Scholar]
  • Lovisolo C. and Schubert A., 1998. Effects of water stress on vessel size and xylem hydraulic conductivity in Vitis vinifera L. J. Exp. Bot. 49: 693–700. [CrossRef] [Google Scholar]
  • Maseda P.H. and Fernandez R.J., 2006. Stay wet or else: three ways in which plants can adjust hydraulically to their environment. J. Exp. Bot. 57: 3963–3977. [CrossRef] [PubMed] [Google Scholar]
  • McDowell N., Pockman W.T., Allen C.D., Breshears D.D., Cobb N., Kolb T., Plaut J., Sperry J., West A., Williams D.G., and Yepez E.A., 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought ? New Phytol. 178: 719–739. [CrossRef] [PubMed] [Google Scholar]
  • O’Leary M.H., Madhavan S., and Paneth P., 1992. Physical and chemical basis of carbon isotope fractionation in plants. Plant Cell Environ. 15: 1099–1104. [Google Scholar]
  • Ponton S., Dupouey J.L., Bréda N., and Dreyer E., 2002. Comparison of water-use efficiency of seedlings from two sympatric oak species: Genotype × environment interactions. Tree Physiol. 22: 413–422. [PubMed] [Google Scholar]
  • Rood S.B., Patino S., Coombs K., and Tyree M.T., 2000. Branch sacrifice: cavitation-associated drought adaptation of riparian cottonwoods. Trees 14: 248–257. [Google Scholar]
  • Rossi S., Simard S., Rathgeber C.B.K.,Deslauriers A., and De Zan C., 2009. Effects of a 20-day-long dry period on cambial and apical meristem growth in Abies balsamea seedlings. Trees 23: 85–93. [CrossRef] [Google Scholar]
  • Schär C., Vidale P.L., Lüthi D., Frei C., Häberli C., Liniger M.A., and Appenzeller C., 2004. The role of increasing temperature variability in European summer heatwaves. Nature 427: 332–336. [CrossRef] [PubMed] [Google Scholar]
  • Searson M.J., Thomas D.S., Montagu K.D., and Conroy J.P., 2004. Wood density and anatomy of water-limited eucalypts. Tree Physiol. 24: 1295–1302. [PubMed] [Google Scholar]
  • Skomarkova M.V., Vaganov E.A., Mund M., Knohl A., Linke P., Boerner A., and Schulze E.D., 2006. Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree rings of beech (Fagus sylvatica) growing in Germany and Italy. Trees 20: 571–586. [CrossRef] [Google Scholar]
  • Sperry J.S., Meinzer F.C., and McCulloh K.A., 2008. Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant Cell Environ. 31: 632–645. [CrossRef] [PubMed] [Google Scholar]
  • Tessier L., Nola P., and Serre-Bachet F., 1994. Deciduous Quercus in the Mediterranean region: tree-ring/climate relationships. New Phytol. 126: 355–367. [CrossRef] [Google Scholar]
  • Thomas F.M. and Gausling T., 2000. Morphological and physiological responses of oak seedlings (Quercus petraea and Q. robur) to moderate drought. Ann. For. Sci. 57: 325–333. [CrossRef] [EDP Sciences] [Google Scholar]
  • Tognetti R., Longobucco A., and Raschi A., 1998. Vulnerability of xylem to embolism in relation to plant hydraulic resistance in Quercus pubescens and Quercus ilex co-occurring in a Mediterranean coppice stand in central Italy. New Phytol. 139: 437–447. [CrossRef] [Google Scholar]
  • Tyree M.T. and Sperry J.S., 1989. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Physiol. Plant Mol. Biol 40: 19–36. [Google Scholar]
  • Tyree M.T. and Zimmermann M.H., 2002. Xylem structure and the ascent of sap. Springer, Berlin. [Google Scholar]
  • Van der Werf G.W.,Sass-Klaassen U.G.W., and Mohren G.M.J., 2007. The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25: 103–112. [CrossRef] [Google Scholar]
  • Warren C.R., McGrath J.F., and Adams M.A., 2001. Water availability and carbon isotope discrimination in conifers. Oecologia 127: 476–486. [CrossRef] [PubMed] [Google Scholar]
  • Zweifel R., Zimmermann L., Zeugin F., and Newbery D.M., 2006. Intra-annual radial growth and water relations of trees: Implications towards a growth mechanism. J. Exp. Bot. 57: 1445–1459. [CrossRef] [PubMed] [Google Scholar]