Free Access
Ann. For. Sci.
Volume 67, Number 8, December 2010
Article Number 804
Number of page(s) 6
Section Original articles
Published online 28 October 2010
  • Alexandersson H., 1986. A homogeneity test applied to precipitation data. J. Climatol. 6: 661–675. [Google Scholar]
  • Bala G., Caldeira K., Wickett M., Phillips T.J., Lobell D.B., Delire C., and Mirin A., 2007. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. USA 104: 6550–6555. [CrossRef] [Google Scholar]
  • Daly C., Halbleib M., Smith J.I., Gibson W.P., Doggett M.K., Taylor G.H., Curtis J., and Pasteris P.P., 2008. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28: 2031–2064. [CrossRef] [Google Scholar]
  • De Vries W., Vel E., Reinds G.J., Deelstra H., Klap J.M., Leeters E.E.J.M.,Hendriks C.M.A.,Kerkvoorden M., Landmann G., Herkendell J., Haussmann T., and Erisman J.W., 2003. Intensive monitoring of forest ecosystems in Europe – 1. Objectives, set-up and evaluation strategy. For. Ecol. Manage. 174: 77–95. [CrossRef] [Google Scholar]
  • Diodato N. and Ceccarelli M., 2005. Interpolation processes using multivariate geostatistics for mapping of climatological precipitation mean in the Sannio Mountains (southern Italy). Earth. Surf. Proc. Land. 30: 259–268. [CrossRef] [Google Scholar]
  • Dorninger M., Schneider S., and Steinacker R., 2008. On the interpolation of precipitation data over complex terrain. Meteorol. Atmos. Phys. 101: 175–189. [CrossRef] [Google Scholar]
  • Ferretti M., Bussotti F., Cenni E., and Cozzi A., 1999. Implementation of quality assurance procedures in the Italian programs of forest condition monitoring. Water Air Soil Pollut. 116: 371–376. [CrossRef] [Google Scholar]
  • Gallo K.P.,Easterling D.R., and Peterson T.C., 1996. The influence of land use/land cover on climatological values of the diurnal temperature range. J. Climate 9: 2941–2944. [CrossRef] [Google Scholar]
  • Houston T.D. and Hiederer R., 2009. Applying quality assurance procedures to environmental monitoring data: a case study. J. Environ. Monitor. 11: 774–781. [Google Scholar]
  • Hutchinson M.F., Mckenney D.W., Lawrence K., Pedlar J.H., Hopkinson R.F., Milewska E., and Papadopol P., 2009. Development and testing of Canada-wide interpolated spatial models of daily minimum-maximum temperature and precipitation for 1961–2003. J. Appl. Meteorol. Clim. 48: 725–741. [CrossRef] [Google Scholar]
  • Innes J.L., 1994. Climatic sensitivity of temperate forests. Environ. Pollut. 83: 237–243. [CrossRef] [PubMed] [Google Scholar]
  • Kang S.Y., Kim S., and Lee D., 2002. Spatial and temporal patterns of solar radiation based on topography and air temperature. Can. J. For. Res. 32: 487–497. [CrossRef] [Google Scholar]
  • Klingaman N.P., Butke J., Leathers D.J., Brinson K.R., and Nickl E., 2008. Mesoscale simulations of the land surface effects of historical logging in a moist continental climate regime. J. Appl. Meteorol. Clim. 47: 2166–2182. [CrossRef] [Google Scholar]
  • Luo W., Taylor M.C., and Parker S.R., 2008. A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales. Int. J. Climatol. 28: 947–959. [CrossRef] [Google Scholar]
  • Miller D.G., Rivington M., Matthews K.B., Buchan K., and Bellocchi G., 2008. Testing the spatial applicability of the Johnson-Woodward method for estimating solar radiation from sunshine duration data. Agric. For. Meteorol. 148: 466–480. [CrossRef] [Google Scholar]
  • O’Neal M.A., Hanson B., Leathers D.J., and Goldstein A., 2009. Estimating land cover – induced increases in daytime summer temperatures near Mt. Adans, Washington. Phys. Geogr. 30: 130–143. [Google Scholar]
  • Österle H., Werner P.C., and Gerstengarbe F.W., 2006. Qualitätsprüfung, Ergänzung und Homogenisierung der täglichen Datenreihen in Deutschland, 1951-2003: ein neuer Datensatz. 7. Deutsche Klimatagung. Klimatrends: Vergangenheit und Zukunft. [Google Scholar]
  • Peterson T.C., 2003. Assessment of urban versus rural in situ surface temperatures in the contiguous United States: No difference found. J. Climate 16: 2941–2959. [CrossRef] [Google Scholar]
  • Peterson T.C.,Easterling D.R., Karl T.R., Groisman P., Nicholls N., Plummer N., Torok S., Auer I., Boehm R., Gullett D., Vincent L., Heino R., Tuomenvirta H., Mestre O., Szentimrey T., Salinger J., Forland E.J.,Hanssen-Bauer I.,Alexandersson H., Jones P., and Parker D., 1998. Homogeneity adjustments of in situ atmospheric climate data: A review. Int. J. Climatol. 18: 1493–1517. [CrossRef] [Google Scholar]
  • Solberg S., Dobbertin M., Reinds G. J., Lange H., Andreassen K., Garcia Fernandez P., Hildingsson A., and de Vries W., 2009. Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: A stand growth approach. For. Ecol. Manage. 258: 1735–1750. [CrossRef] [Google Scholar]
  • Spadavecchia L. and Wiliams M., 2009. Can spatio-temporal geostatistical methods improve high resolution regionalisation of meteorological variables? Agric. For. Meteorol. 149: 1105–1117. [Google Scholar]
  • Stahl K., Moore R.D., Floyer J.A., Asplin M.G., and McKendry I.G., 2006. Comparison of approaches in a large region with complex topography and highly variable station density. Agric. For. Meteorol. 139: 224–236. [Google Scholar]
  • Strack J.E., Pielke R.A., Steyaert L.T., and Knox R.G., 2008. Sensitivity of June near-surface temperatures and precipitation in the eastern United States to historical land cover changes since European settlement. Water Resour. Res. 44: W11401. [Google Scholar]
  • Thornton F.C., Running S.W., and White M.A., 1997. Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol. 190: 214–251. [CrossRef] [Google Scholar]
  • Vicente-Serrano S.M.,Saz-Sanchez M.A., and Cuadrat J.M., 2003. Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature. Clim. Res. 24: 161–180. [CrossRef] [Google Scholar]