Free Access
Ann. For. Sci.
Volume 67, Number 8, December 2010
Article Number 805
Number of page(s) 11
Section Original articles
Published online 07 October 2010
  • Aber J.,Neilson R.P.,McNulty S.,Lenihan J.M.,Bachelet D., and Drapek R.J., 2001. Forest processes and global environmental change: Predicting the effects of individual and multiple stressors. Bioscience 51: 735–751. [CrossRef] [Google Scholar]
  • Bartelink H., 1998. Simulation of growth and competition in mixed stands of Douglas-fir and beech. Ph.D. thesis Wageningen University, Wageningen, The Netherlands. [Google Scholar]
  • Boisvenue C. and Running S.W., 2006. Impacts of climate change on natural forest productivity – evidence since the middle of the 20th century. Glob. Change Biol. 12: 862–882. [CrossRef] [Google Scholar]
  • Bolte A. and Villanueva I., 2006. Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). Eur. J. For. Res. 125: 15–26. [CrossRef] [Google Scholar]
  • Breda N.,Huc R.,Granier A., and Dreyer E., 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63: 625–644. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bugmann H., Grote R., Lasch P., Lindner M., and Suckow F., 1997. A new forest gap model to study the effects of environmental change on forest structure and functioning. In: Mohren G.M.J., Kramer K., and Sabaté S. (Eds.), Impacts of global change on tree physiology, Kluwer Academic Publishers, Dordrecht, The Netherlands. [Google Scholar]
  • Burkhart H. and Tham A., 1992. Predictions from growth and yield models of the performance of mixed-species stands. In: Cannel M., Malcolm D., and Robertson P. (Eds.), The ecology of mixed-species stands of trees, Blackwell, Oxford. [Google Scholar]
  • Cruiziat P.,Cochard H., and Améglio T., 2002. Hydraulic architecture of trees: main concepts and results. Ann. For. Sci. 59: 723–753. [CrossRef] [EDP Sciences] [Google Scholar]
  • Del Río M. and Sterba H., 2009. Comparing volume growth in pure and mixed stands of Pinus sylvestris and Quercus pyrenaica. Ann. For. Sci. 66: 502. [CrossRef] [EDP Sciences] [Google Scholar]
  • De Visser P.H.B.,Beier C.,Rasmussen L.,Kreutzer K.,Steinberg N.,Bredemeier M.,Blanck K.,Farrell E.P., and Cummins T., 1994. Biological response of five forest ecosystems in the EXMAN project to input changes of water, nutrients and atmospheric loads. For. Ecol. Manage. 68: 15–29. [CrossRef] [Google Scholar]
  • Dittmar C.,Zech W., and Elling W., 2003. Growth variations of Common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe – a dendroecological study. For. Ecol. Manage. 173: 63–78. [CrossRef] [Google Scholar]
  • Feliksik E. and Wilczynski S., 2004. Dendroclimatological regions of Douglas fir (Pseudotsuga menziesii Franco) in western Poland. Eur. J. For. Res. 123: 39–43. [CrossRef] [Google Scholar]
  • Gerstengarbe F. and Werner P., 2005. Simulationsergebnisse des regionalen Klimamodells STAR. In: Wechsung F., Becker A., and Gräfe P. (Eds.), Auswirkungen des globalen Wandels auf Wasser, Umwelt und Gesellschaft im Elbegebiet, Weißenseeverlag, Berlin, Germany. [Google Scholar]
  • Hall S.J. and Marchand P.J., 2010. Effects of stand densitiy on ecosystem properties of subalpine forests in the southern Rocky Mountains, USA. Ann. For. Sci. 67: 102. [CrossRef] [EDP Sciences] [Google Scholar]
  • Haxeltine A. and Prentice I.C., 1996a. A general model for the light-use efficiency of primary production. Funct. Ecol. 10: 551–561. [CrossRef] [Google Scholar]
  • Haxeltine A. and Prentice I.C., 1996b. BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Glob. Biogeochem. Cycles 10: 693–709. [CrossRef] [Google Scholar]
  • Hendriks C.M.A. and Bianchi F., 1995. Root density and root biomass in pure and mixed forest stands of Donglas-fir and Beech. Neth. J. Agric. Sci. 43: 321–331. [Google Scholar]
  • Hermann R.K. and Lavender D.P., 1999. Douglas-fir planted forests. New For. 17: 53–70. [CrossRef] [Google Scholar]
  • Jansen J., Sevenster J., and Faber P., 1996. Obsprengsttabellen voor belangrijke boomsorten in Nederland. Landbouwuniversiteit Wageningen, Wageningen, The Netherlands. [Google Scholar]
  • Kelty M. and Cameron I., 1994. Ecological principles of production differences between monociultures and mixtures. In: Costa M.P.D. and Preuhsler T. (Eds.), Mixed stands: research plots, measurements and results, models, Instituto Superior de Agronomia, Lisboa, Portugal. [Google Scholar]
  • Kint V.,Lasch P.,Lindner M., and Muys B., 2009. Multipurpose conversion management of Scots pine towards mixed oak-birch stands-A long-term simulation approach. For. Ecol. Manage. 257: 199–214. [CrossRef] [Google Scholar]
  • Korol R.L.,Running S.W., and Miller K.S., 1995. Incorporating intertree competition into an ecosystem model. Can. J. For. Res. 25: 413–424. [CrossRef] [Google Scholar]
  • Lasch P.,Badeck F.W.,Suckow F.,Lindner M., and Mohr P., 2005. Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). For. Ecol. Manage. 207: 59–74. [CrossRef] [Google Scholar]
  • Lebourgeois F., 2007. Climatic signal in annual growth variation of silver fir (Abies alba Mill.) and spruce (Picea abies Karst.) from the French permanent plot network (RENECOFOR). Ann. For. Sci. 64: 333–343. [CrossRef] [EDP Sciences] [Google Scholar]
  • Leuschner C. and Hertel D., 2003. Fine root biomass of temperate forests in relation to soil acidity and fertility, climate, age and species. Prog. Bot. 64: 405–438. [Google Scholar]
  • Lindner M.,Sievanen R., and Pretzsch H., 1997. Improving the simulation of stand structure in a forest gap model. For. Ecol. Manage. 95: 183–195. [CrossRef] [Google Scholar]
  • Mäkelä A.,Landsberg J.,Ek A.R.,Burk T.E.,Ter-Mikaelian M.,Agren G.I.,Oliver C.D., and Puttonen P., 2000a. Process-based models for forest ecosystem management: current state of the art and challenges for practical implementation. Tree Physiol. 20: 289–298. [Google Scholar]
  • Mäkelä A.,Sievanen R.,Lindner M., and Lasch P., 2000b. Application of volume growth and survival graphs in the evaluation of four process-based forest growth models. Tree Physiol. 20: 347–355. [Google Scholar]
  • Nakicenovic N., Alcamo J., Davis G., Vries B.D., Fenhann J., Gaffin S., Gregory K., Grübler A., Jung T., Kram T., Rovere E.L., Michaelis L., Mori S., Morita T., Pepper W., Pitcher H., Price L., Riahi K., Roehrl A., Rogner H., Sankovski A., Schlesinger M., Shukla P., Smith S., Swart R., Rooijen S.V., Victor N., and Dadi Z., 2000. IPCC Special Report Emission Scenarios. Cambridge University Press, Cambridge, United Kingdom. [Google Scholar]
  • Oosterbaan A., Berg C.V.D., and Olsthoorn A., 1999. Monitoring competition in young mixed plantations with broad-leaved tree species: a case study. In: Olsthoorn A., Bartelink H., Gardiner J., Pretzsch H., Hekhuis H., and Franc A. (Eds.), Management of mixed-species forest: silviculture abd economics. DLO Institute for Forestry and Nature research (IBN-DLO), Wageningen, The Netherlands. [Google Scholar]
  • Riek W. and Stähr F., 2004. Eigenschaften typischer Waldböden im Nordostdeutschen Tiefland unter besonderer Berücksichtigung des Landes Brandenburg. Landesforstanstalt Eberswalde, Eberswalde, Germany. [Google Scholar]
  • Schmid I., 2002. The influence of soil type and interspecific competition on the fine root system of Norway spruce and European beech. Basic Appl. Ecol. 3: 339–346. [CrossRef] [Google Scholar]
  • Stout D. and Sala A., 2003. Xylem vulnerability to cavitation in Pseutotsuga menziesii and Pinus ponderosa from contrasting habitats. Tree Physiol. 23: 43–50. [PubMed] [Google Scholar]
  • Suckow F.,Badeck F.,Lasch P., and Schaber J., 2001. Nutzung von Level-II-Beobachtungen für Test und Anwendung des Sukzessionsmodells FORESEE. Beiträge für Forstwirtschaft und Landschaftsökologie 35: 84–87. [Google Scholar]
  • Tiktak A. and Bouten W., 1990. Soil hydrological system characterization of the two ACIFORN stands using monitoring data and the soil hydrological model “SWIF”. Dutch priority programme on acidification, Wageningen, The Netherlands. [Google Scholar]
  • Tiktak A., and Bouten W., 1994. Soil-water dynamics and long-term water balances of a Douglas-fir stand in the Netherlands. J. Hydrol. 156: 265–283. [CrossRef] [Google Scholar]
  • Tiktak A., Konsten C., Maas R.V.D., and Bouten W., 1988. Soil chemistry and physics of two Douglas-fir stands affected by acid atmospheric deposition on the Veluwe, the Netherlands. Dutch priority programme on acidification, Wageningen, The Netherlands. [Google Scholar]
  • Van den Hurk B., Tank A., Lederink G., Ulden A.V., Oldenborgh G.V., Katsman C., Brink H.V.D., Keller F., Bessembinder J., Burgers G., Komen G., Hazeleger W., and Drijhout S., 2006. Climate change scenarios 2006 for the Netherlands. KNMI (Royal Dutch Meteorological Institute), de Bilt, The Netherlands. [Google Scholar]
  • Van der Werf G.,Sass-Klaassen U., and Mohren G.M.J., 2007. The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25: 103–112. [CrossRef] [Google Scholar]
  • Verkaik E., Moraal L., and Nabuurs G., 2009. Potential Impacts of climate change on Dutch forests – Mapping the risks. In, Alterra-report, Wageningen, p. 84. [Google Scholar]