Free Access
Issue
Ann. For. Sci.
Volume 65, Number 8, December 2008
Article Number 802
Number of page(s) 8
DOI https://doi.org/10.1051/forest:2008067
Published online 04 December 2008
References of  Ann. For. Sci. 65 (2008) 802
  1. Berthier S., Kokutse A.D., Stokes A., and Fourcaud T., 2001. Irregular heartwood formation in Maritime pine (Pinus pinaster Ait): consequences for biomechanical and hydraulic tree functioning. Ann. Bot. 87: 19–25 [CrossRef].
  2. Brix H. and Mitchell A.K., 1983. Thinning and nitrogen fertilization effects on sapwood development and relationships of foliage quantity to sapwood area and basal area in Douglas-fir. Can. J. For. Res. 13: 384–389 [CrossRef].
  3. Carlson W.C. and Harrington C.A., 1987. Cross-sectional area relationships in root systems of loblolly and shortleaf pine. Can. J. For. Res. 17: 556–558 [CrossRef].
  4. Dean T.I., Roberts S.D., Gilmore D.W., Maguire D.A., Lang J.N., O'Hara K.L., and Deymour R.S., 2002. An evaluation of the uniform stress hypothesis based on stem geometry in selected North American conifers. Trees Struct. Funct. 16: 559–568.
  5. Drexhage M. and Gruber F., 1999. Above- and below-stump relationships for Picea abies: estimating root system biomass from breast-height diameters. Scand. J. For. Res. 14: 328–333 [CrossRef].
  6. Dunham S., Lachenbruch B., and Ganio L., 2007. Bayesian analysis of Douglas-fir hydraulic architecture at multiple scales. Trees Struct. Funct. 21: 65–78.
  7. Gartner B.L., 2002. Sapwood and inner bark quantities in relation to leaf area and wood density in Douglas-fir. IAWA J. 23: 267–285.
  8. Harrington C.A., and DeBell D.S., 1996. Above- and below-ground characteristics associated with wind toppling in a young Populus plantation. Trees 11: 109–118.
  9. Hillis W.E., 1987. Heartwood and Tree Exudates. Springer-Verlag, Berlin, New York.
  10. Kavanagh K.L., Bond B.J., Aitken S.N., Gartner B.C., and Knouve S.A., 1999. Shoot and root vulnerability to xylem cavitation in four populations of Douglas-fir seedlings. Tree Physiol. 19: 31–37 [PubMed].
  11. Kuiper L.C., and Coutts M. P., 1992. Spatial disposition and extension of the structural root system of Douglas-fir. For. Ecol. Manage. 47: 111–125 [CrossRef].
  12. Kutscha N.P., and Sachs I. B., 1962. Color tests for differentiating heartwood and sapwood in certain softwood tree species. Report 2246 US Department of Agriculture Forest Service Forest, Forest Products Laboratory, Madison WI 16 p.
  13. Langstrom B., and Hellqvist C., 1991. Effects of different pruning regimes on growth and sapwood area of Scots pine. For. Ecol. Manage. 44: 239–254 [CrossRef].
  14. Maguire D.A., and Hann D.W., 1987. Equations for predicting sapwood area at crown base in southwest Oregon Douglas-fir. Cana. J. For. Res. 17: 236–241 [CrossRef].
  15. Margolis H.A., Gagnon R.R., Pothier D., and Pineau M., 1988. The adjustment of growth, sapwood area, heartwood area, and sapwood saturated permeability of balsam fir after different intensities of pruning. Cana. J. For. Res. 18: 723–727 [CrossRef].
  16. Margolis H.A., Oren R., Whitehead D., and Kaufmann M. 1995. Leaf area dynamics of conifer forests. in W.K. Smith and T.M. Hinkley, Eds. Ecophysiology of Coniferous Forests. Academic Press, San Diego, CA.
  17. McArdle B.H., 2003. Lines, models, and errors: regression in the field. Limnol. d Oceanogr. 48: 1363–1366.
  18. McDowell N., Barnard H., Bond B.J., Hincklry T., Hubbard R., Islui H., 2002. The relationship between tree height and leaf area:sapwood area ratio. Oecologia 132: 12–20 [CrossRef].
  19. Medhurst J.L. and Beadle C.L., 2002. Sapwood hydraulic conductivity and leaf area - sapwood area relationships following thinning of a Eucalyptus nitens plantation. Plant, Cell Environ. 25: 1011–1019.
  20. Mencuccini M. and Grace J., 1995. Climate influences the leaf area/sapwood area ratio in Scots pine. Tree Physiol.y 15: 1–10 [CrossRef].
  21. Monserud R.A. and Marshall J.D., 1999. Allometric crown relations in three northern Idaho conifer species. Cana. J. For. Res. 29: 521–535 [CrossRef].
  22. Neter J., Kutner M.H., Nachsheim C.J., and Wasserman W., 1996. Appl. Linear Statistical Models, 4 ed. WCB McGraw Hill.
  23. Niklas K.J., 1994. Plant Allometry: The Scaling of Form and Process. University of Chicago Press, Chicago.
  24. Pinheiro J. and Bates D., 2000. Mixed-Effects Models in S and S-Plus. Springer, New York.
  25. Pinheiro J., Bates D., DebRoy S., and Sarkar D., 2006. nlme: Linear and nonlinear mixed effects models. R package version 3.1–73.
  26. R Development Core Team, 2006. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org.
  27. Richardson A.D. and zu Dohna H., 2003. Predicting root biomass from branching patterns of Douglas-fir root systems. Oikos 100: 9–104.
  28. Schabenberger O. and Pierce F. J., 2002. Contemporary statistical models for the plant and soil sciences. CRC Press.
  29. Shinozaki K., Yoda K., Hozumi K., and Kira T., 1964a. A quantitative analysis of plant form: the pipe model theory I. basic analysis. Jpn J. Ecol. 14: 97–105.
  30. Shinozaki K., Yoda K., Hozumi K., and Kira T., 1964b. A quantitative analysis of plant form: the pipe model theory II. further evidence of the theory and its application in forest ecology. Jpn J. Ecol. 14: 133–139.
  31. Spicer R., 2005. Senescense in secondary xylem: heartwood formation as an active developmental process. in N. M. Holbrook and M. A. Zwienicki, editors. Vascular Transport in Plants. Elsevier Academic Press, San Diego, PP. 457–475.
  32. Spicer R. and Gartner B.L., 2001. The effects of cambial age and position within the stem on specific conductivity in Douglas-fir (Pseudotsuga menziesii) sapwood. Trees Struct. Funct. 15: 222–229.
  33. Spicer R. and Holbrook N.M., 2007. Effects of carbon dioxide and oxygen on sapwood respiration in five temperate tree species. J. Exp. Bot.58: 1313–1320.
  34. Telewski F. W., 2006. A unified hypothesis of mechanoperception in plants. Am. J. Bot. 93: 1466–1476 [CrossRef].
  35. Thies W.G. and Cunningham P.G., 1996. Estimating large-root biomass from stump and breast-height diameters for Douglas-fir in western Oregon. Cana. J. Forest Res. 26: 237–243 [CrossRef].
  36. Tyree M.T. and Ewers F.W., 1991. Tansley Review No. 34: The hydraulic architecture of trees and other woody plants. New Phytol. 119: 345-360 [CrossRef].
  37. United States Department of Agriculture Natural Resources Conservation Service, 2006. Soil Survey Geographic Database for Pierce and Thurston Counties, WA. http://soildatamart.nrcs.usda.gov. (February 22, 2006).
  38. Waring R.H., Schroeder P.E., and Oren R., 1982. Application of the pipe model theory to predict canopy leaf area. Cana. J. For. Res. 12: 556–560 [CrossRef].
  39. Whitehead D., Edwards W.R.N., and Jarvis P. G., 1984. Conducting sapwood area, foliage area, and permeability in mature trees of Picea sitchensis and Pinus contorta. Cana. J. For. Res. 14: 940-947 [CrossRef].
  40. Wright I.J., Falster D.S., Pickup M., and Westoby M., 2006. Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics. Physiol. Plant. 127: 445–456 [CrossRef].