Free Access
Ann. For. Sci.
Volume 67, Number 3, May 2010
Article Number 312
Number of page(s) 11
Section Original articles
Published online 18 February 2010
  • Arora R., Rowland L.J. and Tanino K., 2003. Induction and release of bud dormancy in woody perennials: a science comes of age. HortScience 38: 911–921 [Google Scholar]
  • Barthélémy D. and Caraglio Y., 2007. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann. Bot. 99: 375–407 [Google Scholar]
  • Chaar H. and Colin F., 1999. Impact of late frost on height growth in young sessile oak regenerations. Ann. Sci. For. 56: 417–429 [Google Scholar]
  • Chaar H., Colin F. and Leborgne G., 1997. Artificial defoliation, decapitation of the terminal bud, and removal of the apical tip of the shoot in sessile oak seedlings and consequences on subsequent growth. Can. J. For. Res. 27: 1614–1621 [CrossRef] [Google Scholar]
  • Champagnat P., 1983. Quelques réflexions sur la dormance des bourgeons des végétaux ligneux. Physiol. Veg. 21: 607–618 [Google Scholar]
  • Church T.W. and Godman R.M., 1966. The Formation and development of dormant buds in sugar maple. For. Sci. 12: 301–306 [Google Scholar]
  • Colin F., Robert N., Druelle J.L. and Fontaine F., 2008. Initial spacing has little influence on transient epicormic shoots in a 20-year-old sessile oak plantation. An. For. Sci. 65: 508. [CrossRef] [Google Scholar]
  • Collet C., Colin F. and Bernier F., 1997. Height growth, shoot elongation and branch development of young Quercus petraea grown under different levels of resource availability. Ann. Sci. For. 54: 65–81 [CrossRef] [Google Scholar]
  • Fink S., 1980. Anatomical studies on the occurrence of shoot and root primordia in the stem region of broadleaved and coniferous trees. 1. Proventitious primordia. Allg. Forst. Jagdz. 151: 160–180 [Google Scholar]
  • Fontaine F., Kiefer E., Clément C., Burrus M. and Druelle J.L., 1999. Ontogeny of proventitious epicormic buds in Quercus petraea. II. From 6 to 40 y of the tree’s life. Trees-Struct. Funct. 14: 83–90 [Google Scholar]
  • Fontaine F., Colin F., Jarret P. and Druelle J.L., 2001. Evolution of the epicormic potential on 17-year-old Quercus petraea trees: first results. Ann. Sci. For. 58: 583–592 [Google Scholar]
  • Fontaine F., Mothe F., Colin F. and Duplat P., 2004. Structural relationships between the epicormic formations on trunk surface and defects induced in the wood of Quercus petraea. Trees-Struct. Funct. 18: 295–306 [CrossRef] [Google Scholar]
  • Harmer R., 1989. The effect of Mineral Nutrients on Growth, Flushing, Apical Dominance and Branching in Quercus petraea (Matt.) Liebl. Forestry 62: 383–395 [CrossRef] [Google Scholar]
  • Harmer R., 2000. Differences in growth and branch production by young plants of two provenances of Quercus robur L. Forestry 73: 271–281 [CrossRef] [Google Scholar]
  • Hartl D. and Clark A., 1997. Principles of Population Genetics. Sinauer Associates Inc., 542 p. [Google Scholar]
  • Henderson C.R., 1953. Estimation of variance and covariance components. Biometrics 9: 226–252 [CrossRef] [MathSciNet] [Google Scholar]
  • Heuret P., Barthélémy D., Nicolini E. and Atger C., 2000. Analysis of height growth factors and trunk development in the sessile oak, Quercus petraea (Matt.) Liebl. (Fagaceae) in dynamic sylviculture. Can. J. Bot. 78: 361–373 [CrossRef] [Google Scholar]
  • Heuret P., Guédon Y., Guérard N. and Barthélémy D., 2003. Analysing branching pattern in plantations of young red oak trees (Quercus rubra L., Fagaceae). Ann. Bot. 91: 479–492 [CrossRef] [PubMed] [Google Scholar]
  • Jarret P., 2004. Chênaie atlantique : Guide des sylvicultures. ONF Ed., Lavoisier, Paris, 335 p. [Google Scholar]
  • Jemission G.M. and Schumacher F.X., 1948. Epicormic branching in old-growth Appalachian hardwoods. J. For. 46: 252–254 [Google Scholar]
  • Jensen J.S., 1993. Variation of growth in Danish provenance trials with oak (Quercus robur L and Quercus petraea Mattuschka Liebl). Ann. Sci. For. 50 (suppl 1): 203–207. [CrossRef] [Google Scholar]
  • Jensen J.S., 2000. Provenance variation in phenotypic traits in Quercus robur and Quercus petraea in Danish provenance trials. Scand. J. For. Res. 15: 297–308 [CrossRef] [Google Scholar]
  • Jensen J.S., Wellendorf H., Jager K., De Vries S.M.G. and Jensen V., 1997. Analysis of 17-year old dutch open-pollinated progeny trial with Quercus robur (L.). For. Genet. 4: 139–147 [Google Scholar]
  • Lang G.A., 1987. Dormancy: a new universal terminology. HorstScience 22: 817–820 [Google Scholar]
  • Lavarenne-Allary S., 1965. Recherche sur la croissance des bourgeons de chênes et de quelques autres espèces ligneuses. Ann. Sci. For. 22: 7–203 [CrossRef] [Google Scholar]
  • López-Fanjul C., Fernández A. and Toro M.A., 2007. The Effect of dominance on the use of the QSTFST contrast to detect natural selection on quantitative traits. Genetics 176: 725–727 [CrossRef] [PubMed] [Google Scholar]
  • Mariette S., Cottrell J., Csaikl U.M., Goikoechea P., Konig A., Lowe A.J., Van Dam B.C., Barreneche T., Bodenes C., Streiff R., Burg K., Groppe K., Munro R.C., Tabbener H. and Kremer A., 2002. Comparison of levels of genetic diversity detected with AFLP and microsatellite markers within and among mixed Quercus petraea (Matt.) Liebl. and Q. robur L. stands. Silvae Genetica 51: 72–79 [Google Scholar]
  • Mauget J.C., 1984. Comportement comparé des bourgeons de l’année et des bourgeons latents chez le noyer (Juglans regia L., cv. “Franquette”). Conséquences sur la morphogenèse de l’arbre. Agronomie 4: 507–515 [Google Scholar]
  • O’Hara K.L. and Valappil N.I., 2000. Epicormic sprouting of pruned western larch. Can. J. For. Res. 30: 324–328 [CrossRef] [Google Scholar]
  • Ricaud S., Alaoui-Sossé B., Crabbé J. and Barnola P., 1995. Dormance et croissance des bourgeons du platane hybride (Platanus acertifolia) en milieu urbain. Can. J. Bot. 73: 130–140 [CrossRef] [Google Scholar]
  • Remphrey W.R. and Davidson C.G., 1992. Spatiotemporal distribution of epicormic shoots and their architecture in branches of Fraxinus pennsylvatica. Can. J. For. Res. 22: 336–340 [CrossRef] [Google Scholar]
  • Scotti-Saintagne C., Bodenes C., Barreneche T., Bertocchi E., Plomion C. and Kremer A., 2004. Detection of quantitative trait loci controlling bud burst and height growth in Quercus robur L. Theor. Appl. Genet. 109: 1648–1659 [CrossRef] [PubMed] [Google Scholar]
  • Segura V., Durel C.E. and Costes E., 2009. Dissecting apple tree architecture into genetic, ontogenetic and environmental effects: QTL mapping. Tree Genet. Genomes 5: 165–179 [CrossRef] [Google Scholar]
  • Shepherd M., Cross M., Dieters M.J. and Henry R., 2002. Branch architecture QTL for Pinus elliotii var. eliottii x Pinus cariaea var. hondurensis hybrids. Ann. For. Sci. 59: 617–625 [CrossRef] [EDP Sciences] [Google Scholar]
  • Smith H.C., 1966. Epicormic branching on eight species of Appalachian hardwoods. USDA Forest Service Note NE-53: 1–4. [Google Scholar]
  • Spitze K., 1993. Population structure in Daphnia obtusa: quantitative genetic and allozyme variation. Genetics 135: 367–374 [PubMed] [Google Scholar]
  • Stone E.L. and Stone M.H., 1943. “Dormant”versus “adventitious”buds. Science 98: 24–33 [CrossRef] [Google Scholar]
  • Ward W.W., 1966. Epicormic branching of black and white oaks. For. Sci. 12: 290–297 [Google Scholar]
  • Wignall T.A. and Browning G., 1988. The effects of stand thinning and artificial shading on epicormic bud emergence in pedunculate oak (Quercus robur L.). Forestry 61: 46–59 [Google Scholar]
  • Wignall T.A., Browning G. and Mackenzie K.A.D., 1987. The physiology of epicormic bud emergence in pedonculate oak (Quercus robur L.). Response to partial notch girdling in thinned and unthinned stands. Forestry 60: 45–56 [Google Scholar]