Free Access
Issue |
Ann. For. Sci.
Volume 67, Number 4, June 2010
|
|
---|---|---|
Article Number | 410 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/forest/2009131 | |
Published online | 02 April 2010 |
- Björklund L., 1999. Identifying heartwood-rich stands or stems of Pinus sylvestris by using inventory data. Silva. Fenn. 33: 119–129. [Google Scholar]
- Carrodus B.B., 1972. Variability in proportion of heartwood formed in woody stems. New Phytol. 71: 713–718. [CrossRef] [Google Scholar]
- Climent J., Chambel M.R., Gil L., and Pardos J.A., 2003. Vertical heartwood variation patterns and prediction of heartwood volume in Pinus canariensis Sm. For. Ecol. Manage. 174: 203–211. [CrossRef] [Google Scholar]
- Damesin C., Ceschia E., Le Goff N., Ottorini J.M., and Dufrene E., 2002. Stem and branch respiration of beech: from tree measurements to estimations at the stand level. New Phytol. 153: 159–172. [CrossRef] [Google Scholar]
- Enquist B.J., 2002. Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol. 22: 1045–1064. [PubMed] [Google Scholar]
- Hacke U.G., and Sperry J.S., 2001. Functional and ecological xylem anatomy. Perspect. Plant Ecol. Evol. Syst. 4: 97–115. [CrossRef] [Google Scholar]
- Hacke U.G., Sperry J.S., Wheeler J.K., and Castro L., 2006. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol. 26: 689–701. [PubMed] [Google Scholar]
- Hazenberg G., and Yang K.C., 1991. The relationship of tree age with sapwood and heartwood width in black spruce, Picea mariana (Mill) B.S.P. Holzforschung 45: 317–320. [CrossRef] [Google Scholar]
- Hoch G., Richter A., and Körner C., 2003. Non-structural carbon compounds in temperate forest trees. Plant Cell Environ. 26: 1067–1081. [Google Scholar]
- Knapic S., and Pereira H., 2005. Within-tree variation of heartwood and ring width in maritime pine (Pinus pinaster Ait.). For. Ecol. Manage. 210: 81–89. [CrossRef] [Google Scholar]
- Knapic S., Tavares F., and Pereira H., 2006. Heartwood and sapwood variation in Acacia melanoxylon R. Br. trees in Portugal. Forestry 79: 371–380. [Google Scholar]
- Longuetaud F., Mothe F., Leban J.-M., and Mäkelä A., 2006. Picea abies sapwood width: Variations within and between trees. Scand. J. For. Res. 21: 41–53. [Google Scholar]
- Mäkelä A., 2002. Derivation of stem taper from the pipe theory in a carbon balance framework. Tree Physiol. 22: 891–905. [PubMed] [Google Scholar]
- Meinzer F.C., Bond B.J., Warren J.M., and Woodruff D.R., 2005. Does water transport scale universally with tree size? Funct. Ecol. 19: 558–565. [Google Scholar]
- Meinzer F.C., Clearwater M.J., and Goldstein G., 2001. Water transport in trees: current perspectives, new insights and some controversies. Environ. Exp. Bot. 45: 239–262. [CrossRef] [PubMed] [Google Scholar]
- Miranda I., Gominho J., Lourenço A., and Pereira H., 2006. The influence of irrigation and fertilization on heartwood and sapwood contents in 18-year-old Eucalyptus globulus trees. Can. J. For. Res. 36: 2675–2683. [CrossRef] [Google Scholar]
- Morais M.C., and Pereira H., 2007. Heartwood and sapwood variation in Eucalyptus globulus Labill. trees at the end of rotation for pulpwood production. Ann. For. Sci. 64: 665–671. [CrossRef] [EDP Sciences] [Google Scholar]
- Nawrot M., Pazdrowski W., and Szymański M., 2008. Dynamics of heartwood formation and axial and radial distribution of sapwood and heartwood in stems of European larch (Larix decidua Mill.). J. For. Sci. 54: 409–417. [Google Scholar]
- Ogle K., and Pacala S.W., 2009. A modeling framework for inferring tree growth and allocation from physiological, morphological and allometric traits. Tree Physiol. 29: 587–605. [CrossRef] [PubMed] [Google Scholar]
- Pérez Cordero L.D., and Kanninen M., 2003. Heartwood, sapwood and bark content, and wood dry density of young and mature teak (Tectona grandis) trees grown in Costa Rica. Silva. Fenn. 37: 45–54. [Google Scholar]
- Pinto I., Pereira H., and Usenius A., 2004. Heartwood and sapwood development within maritime pine (Pinus pinaster Ait.) stems. Trees – Struct. Funct. 18: 284–294. [CrossRef] [Google Scholar]
- Pruyn M.L., Harmon M.E., and Gartner B.L., 2003. Stem respiratory potential in six softwood and four hardwood tree species in the central cascades of Oregon. Oecologia 137: 10–21. [CrossRef] [PubMed] [Google Scholar]
- Sellin A., 1994. Sapwood-heartwood proportion related to tree diameter, age, and growth rate in Picea abies. Can. J. For. Res. 24: 1022–1028. [CrossRef] [Google Scholar]
- Sprugel D.G., 1983. Correcting for bias in log-transformed allometric equations. Ecology 64: 209–210. [CrossRef] [Google Scholar]
- Taylor A.M., Gartner B.L., and Morrell J.J., 2002. Heartwood formation and natural durability – A review. Wood Fiber Sci. 34: 587–611. [Google Scholar]
- Wang C.K., 2006. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. For. Ecol. Manage. 222: 9–16. [CrossRef] [Google Scholar]
- Wullschleger S.D., Meinzer F.C., and Vertessy R.A., 1998. A review of whole-plant water use studies in trees. Tree Physiol. 18: 499–512. [PubMed] [Google Scholar]
- Yang K.C., and Hazenberg G., 1991a. Relationship between tree age and sapwood/heartwood width in Populus tremuloides Michx. Wood Fiber Sci. 23: 247–252. [Google Scholar]
- Yang K.C., and Hazenberg G., 1991b. Sapwood and heartwood width relationship to tree age in Pinus banksiana. Can. J. For. Res. 21: 521–525. [CrossRef] [Google Scholar]