Free Access
Ann. For. Sci.
Volume 67, Number 4, June 2010
Article Number 411
Number of page(s) 12
Published online 02 April 2010
  • Aber J.D., Nadelhoffer K.J., Steudler P., and Melillo J.M., 1989. Nitrogen satauration in northern forest ecosystems: hypotheses and implications. BioScience 39: 378–386. [CrossRef] [Google Scholar]
  • Berg B., and Meentemeyer V., 2002. Litter quality in a north European transect versus carbon storage potential. Plant Soil 242: 83–92. [CrossRef] [Google Scholar]
  • Carlisle A., Brown A.H.F., and White E.J., 1966. Litter fall, leaf production and the effects of defoliation by Tortrix viridana in a sessile oak (Quercus petraea) woodland. J. Ecol. 54: 65–85. [CrossRef] [Google Scholar]
  • Chang S.-C., and Matzner E., 2000. The effect of beech stemflow on spatial patterns of soil solution chemistry and seepage fluxes in a mixed beech/oak stand. Hydrol. Process. 14: 135–144. [CrossRef] [Google Scholar]
  • Currie W.S., Aber J.D., McDowell W.H., Boone R.D., and Magill A.H, 1996. Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests. Biogeochemistry 35: 471–505. [CrossRef] [Google Scholar]
  • De Schrijver A.D., Geudens G., Augusto L., Staelens J., Mertens J., Wuyts K., Gielis L., and Verheyen K., 2007. The effect of forest type on throughfall deposition and seepage flux: a review. Oecologia 153: 663–674. [CrossRef] [PubMed] [Google Scholar]
  • Draaijers G.P.J., and Erisman J.W., 1995. A canopy budget model to assess atmospheric deposition from throughfall measurements. Water Air Soil Pollut. 85: 2253–2258. [CrossRef] [Google Scholar]
  • Ellenberg H., Mayer R., and Schauermann J., 1986. Ökosystem-forschung- Ergebnisse des Sollingprojektes. Ulmer Verlag, Stuttgart. [Google Scholar]
  • Finzi A.C., Canham C.D., and v. Breemen N., 1998. Canopy tree-soil interactions within temperate forests. Ecol. Appl. 8: 447–454. [Google Scholar]
  • Hagedorn F., van Hees P.A.W., Handa, I.T., and Hättenschwiler, S., 2008. Elevated atmospheric CO2 fuels leaching of old dissolved organic matter at the alpine treeline. Global Biogeochem. Cycles 22. DOI: 10.1029/2007GB003026. [Google Scholar]
  • Hosker R.P. Jr., and Lindberg S.E., 1981. Review: atmospheric deposition and plant assimilation of gases and particles. Atmosph. Environ. 16: 889–910. [CrossRef] [Google Scholar]
  • Ibrom A. 1993. Die Deposition und die Pflanzenauswaschung (Leaching) von Pflanzennährstoffen in einem Fichtenbestand im Solling, Forschungszentrum Waldökosysteme, Reihe A, Bd. 105. [Google Scholar]
  • Kinkel L.L., 1997. Microbial population dynamics on leaves. Annu. Rev. Phytopathol. 35: 327–347. [CrossRef] [PubMed] [Google Scholar]
  • Lamersdorf N.P. and Blank K., 1995. Evaluation of fine material input with throughfall for a spruce forest in Solling, FRG, by means of a roof construction. In: Jenkins A., Ferrier R.C., Kirby C. (Eds.), Ecosystem manipulation experiments: scientific approaches, experimental design and relevant results, Ecosystem Research Report 20, Commission of the European Communities. [Google Scholar]
  • Le Mellec A., and Michalzik B., 2008. Impact of a pine lappet (Dendrolimus pini) mass outbreak on C and N fluxes to the forest floor and soil microbial properties in a Scots pine forest in Germany. Can. J. For. Res. 38: 1829–1849. [CrossRef] [Google Scholar]
  • Levia Jr., D.F., and Frost E.E., 2006. Variability of throughfall volume and solute inputs in wooded ecosystems. Progr. Phys. Geogr. 30: 605–632. [CrossRef] [Google Scholar]
  • Lichter J., Lavine M., Mace K.A., Richter D.D., and Schlesinger W.H., 2000. Throughfall chemistry in a loblolly pine plantation under elevated atmospheric CO2 concentrations. Biogeochemistry 50: 73–93. [CrossRef] [Google Scholar]
  • Lovett G.M., and Lindberg S.E., 1993. Atmospheric deposition and canopy interactions of nitrogen in forests. Can. J. For Res. 23: 1603–1616. [CrossRef] [Google Scholar]
  • Manderscheid B., and Matzner E., 1995. Spatial heterogeneity of soil solution chemistry in a mature Norway spruce (Picea abies (L.) Karst.) stand. Water Air Soil Pollut. 85: 1185–1190. [CrossRef] [Google Scholar]
  • Matzner E., and Meiwes K.J., 1994. Long-term development of element fluxes with bulk precipitation and throughfall in two German forests. J. Environ. Qual. 23: 162–166. [CrossRef] [Google Scholar]
  • Meesenburg H. and Brumme R., 2009. General Description of the Study site. In: Functioning and Management of European Beech Ecosystems, Ecological Studies 2008, Springer Verlag, Berlin, Heidelberg. [Google Scholar]
  • Mercier J., and Lindow S.E., 2000. Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl. Environ. Microbiol. 66: 369–374. [CrossRef] [PubMed] [Google Scholar]
  • Michalzik M., Kalbitz K., Park J.H., Solinger S., and Matzner E., 2001. Fluxes and concentrations of dissolved organic carbon and nitrogen – a synthesis for temperate forests. Biogeochemistry 52: 173–205. [CrossRef] [Google Scholar]
  • Panferov O., Kreilein H., Meesenburg H., Eichhorn J., and Gravenhorst G., 2010. Climate at three beech forest sites in Central Germany, In: Brumme R. and Alphei J. (Eds.), Human impacts on carbon and nitrogen cycles in temperate beech forests, Ecological Series, Springer, Berlin/New York, Germany (in print). [Google Scholar]
  • Prescott C.E., 2002. The influence of forest canopy on nutrient cycling. Tree Physiol. 22: 1193–1200. [PubMed] [Google Scholar]
  • Rennenberg H., and Gessler A., 1999. Consequences of N deposition to forest ecosystems – recent results and future reserach needs. Water Air Soil Pollut. 116: 47–64. [CrossRef] [Google Scholar]
  • Rothe A., Huber C., Kreutzer K., and Weis W., 2002. Deposition and soil leaching in stands of Norway spruce and European Beech: results from the Höglwald research in comparison with other European case studies. Plant Soil 240: 33–45. [CrossRef] [Google Scholar]
  • Schipka F., Heimann J., and Leuschner C., 2005. Regional variation in canopy transpiration of Central European beech forests. Oecologia 143: 260–270. [PubMed] [Google Scholar]
  • Seiler J., and Matzner E., 1995. Spatial variability of throughfall chemistry and selected soil properties as influenced by stem distance in a mature Norway spruce (Picea abies (L.) Karst.) stand. Plant Soil 176: 139–147. [CrossRef] [Google Scholar]
  • Stadler B., and Müller T., 2000. Effects of aphids and moth caterpillars on epiphytic micro-organisms in canopies of forest trees. Can. J. For. Res. 30: 631–638. [CrossRef] [Google Scholar]
  • Sollins P., Grier C.C., McCorison F.M., Cromack Jr. K., Fogel R., and Fredriksen R.L., 1980. The internal element cycles of an old-growth Douglas-fir ecosystem in Western Oregon. Ecol. Monogr. 50: 261–285. [CrossRef] [Google Scholar]
  • Weseley M.L., 1989. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Environ. 23: 1293–1304. [CrossRef] [Google Scholar]
  • Watanabe, M., Takamatsu T., Koshikawa M.K., Yamamura S., and Inubushi K., 2008. Dry deposition of acidic air pollutants to tree leaves, determined by a modified leaf-washing technique. Atmos. Environ. 42: 7339–7347. [CrossRef] [Google Scholar]
  • Wright R.F., Alewell C., Cullen J.M., Evans C.D., Marchetto A., Moldan A., Prechtel A., and Rogora M., 2001. Trends in nitrogen deposition and leaching in acid-sensitive strams in Europe. Hydrol. Earth Syst. Sci. 5: 299–310. [CrossRef] [Google Scholar]
  • Zhang G., Zeng G.M., Jiang Y.M., Huang G.H., Li J.B., Yao J.M., Tan W., Xiang R.J., and Zhang X.L., 2006. Modelling and measurement of two layer-canopy interception losses in a subtropical evergreen forest of south-central China. Hydrol. Earth Syst. Sci. 10: 65–77. [CrossRef] [Google Scholar]