Free Access
Issue
Ann. For. Sci.
Volume 67, Number 4, June 2010
Article Number 405
Number of page(s) 9
DOI https://doi.org/10.1051/forest/2009125
Published online 11 March 2010
  • Abourouh M., 1996. Les évaluations quantitatives des mycorhizes en pépinière et sur le terrain. Cah. Options méditerr. 20: 51–61. [Google Scholar]
  • Arnebrant K., 1994. Nitrogen amendments reduce the growth of extramatrical ectomycorrhizal mycelium. Mycorrhiza 5: 7–15. [CrossRef] [Google Scholar]
  • Brunner I. and Brodbeck S., 2001. Response of mycorrhizal Norway spruce seedlings to various nitrogen loads and sources. Environ. Pollut. 114: 223–233. [CrossRef] [PubMed] [Google Scholar]
  • Brundrett M., Bougher N., Dell B., Grove T. and Malajczuk N., 1996. Working with mycorrhizas in forestry and agriculture, ACIAR Monograph 32, Camberra, Australia, 374 p. [Google Scholar]
  • Canham C.D., Berkowitz A.R., Kelly V.R., Lovett G.M., Ollinger S.F. and Schnurr J., 1996. Biomass allocation and multiple resource limitation in tree seedlings. Can. J. For. Res. 26: 1521–1530. [CrossRef] [Google Scholar]
  • Díaz G., Carrillo C. and Honrubia M., 2009. Production of Pinus halepensis seedlings inoculated with the edible fungus Lactarius deliciosus under nursey conditions. New For. 38: 215–227. [CrossRef] [Google Scholar]
  • Díaz G., Gutiérrez A. and Honrubia M., 2004. Utilización de micorrización controlada en la reforestación de un suelo agrícola con pino carrasco. Cuad. Soc. Esp. Cien. For. 17: 151–155. [Google Scholar]
  • Dominguez A., 1997. Tratado de Fertilización. Mundi-Prensa, Madrid, 613 p. [Google Scholar]
  • Doskey M.G., Boersman L. and Linderman R.G., 1991. Role for the photosynthate demand of ectomycorrhizas in response of Douglas-fir seedlings to drying soil. New Phytol. 117: 327–334. [CrossRef] [Google Scholar]
  • González-Ochoa A.I., de las Heras J., Torres P. and Sánchez-Gómez E., 2003. Mycorrhization of Pinus halepensis Mill. and Pinus pinaster Aiton seedlings in two commercial nurseries. Ann. For. Sci. 60: 43–48. [CrossRef] [EDP Sciences] [Google Scholar]
  • Guidot A., Verner A.C., Debaud J.C. and Marmeisse R., 2005. Intraspecific variation in use of different organic nitrogen sources by the ectomycorrhizal fungus Hebeloma cylindrosporum. Mycorrhiza 15: 167–177. [CrossRef] [PubMed] [Google Scholar]
  • Hilszczanska D., Malecka M. and Sierota Z., 2008. Changes in nitrogen level and mycorrhizal structure of Scots pine seedlings inoculated with Thelephora terrestris. Ann. For. Sci. 65: 409. [CrossRef] [EDP Sciences] [Google Scholar]
  • Holopainen T. and Heinonen-Tanski H., 1993. Effects of different nitrogen sources on the growth of Scots pine seedlings on the ultraestructure and development of their mycorrhizae. Can. J. For. Res. 23: 362–372. [CrossRef] [Google Scholar]
  • Landis T.D., Tinus R.W., McDonald S.E. and Barnett J.P., 1989. The container tree nursery manual, vol. 4, Mineral nutrients and fertilization. Agric. Hanbook 674, USDA Forest Service, Washington D.C., 120 p. [Google Scholar]
  • Luo Z., Li K., Jiang X. and Polle A., 2009. Ectomycorrhizal fungus (Paxillus involutus) and hydrogel affect performance of Populus euphratica exposed to drought stress. Ann. For. Sci. 66: 106. [CrossRef] [EDP Sciences] [Google Scholar]
  • Marx D.H., 1969. The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59: 153–163. [Google Scholar]
  • Marx D.H., 1981. Variability in ectomycorrhizal development and growth among isolates of Pisolithus tinctoriusas affected by source, age and reisolation. Can J. For. Sci. 11: 168–174. [Google Scholar]
  • Ne’eman G. and Trabaud L., 2000. Ecology, biogeography and management of Pinus halepensis andP. brutia forest ecosystems in the Mediterranean Basin. Backhuys Publishers, The Netherlands, 407 p. [Google Scholar]
  • Nehls U., 2004. Carbohydrates and nitrogen: Nutrients and signals in ectomycorrhizs. In: Varma A., Abbott L., Werner D. and Hampp R. (Eds.), Plant surface microbiology, Springer Verlag, Berlin Heidelberg, Germany, pp. 377–392. [Google Scholar]
  • Oliet J., Planelles R., Segura M.L., Artero F. and Jacobs D.F., 2004. Mineral nutrition and growth of containerized Pinus halepensis seedlings under controlled-release fertilizer. Sci. Hort. 103: 113–129. [Google Scholar]
  • Oliet J., Planelles R., Artero F., Valverde R., Jacobs D.F. and Segura M.L., 2009. Field performance of Pinus halepensis planted in Mediterranean arid conditions: relative influence of seedling morphology and mineral nutrition. New For. 37: 313–331. [CrossRef] [Google Scholar]
  • Olsen S.R., Cole C.V., Watanabe F.S. and Dean L.A., 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ. 939. [Google Scholar]
  • Parladé J., Luque J., Pera J. and Rincón A. 2004. Field performance of Pinus pineaandPinus halepensis seedlings inoculated with Rhizopogon spp. and out-planted in formerly arable land. Ann. For. Sci. 61: 504–514. [Google Scholar]
  • Parladé J., Pera J. and Luque J., 2003. Evaluation of mycelial inocula of edible Lactarius species for the production of Pinus pinaster and P. sylvestris mycorrhizal seedlings under greenhouse conditions. Mycorrhiza 14: 171–176. [PubMed] [Google Scholar]
  • Puértolas J., Gil. L. and Pardos J.A., 2003. Effects of nutritional status and seedling size on field performance of Pinus halepensis planted on former arable land in the Mediterranean basin. Forestry 76: 159–168. [CrossRef] [Google Scholar]
  • Querejeta J.I., Roldán A., Albadalejo J. and Castillo V., 1998. The role of mycorrhizae, site preparation, and organic amendment in the afforestation of a semi-arid mediterranean site with Pinus halepensis. For. Sci. 44: 203–211. [Google Scholar]
  • Rangel-Castro J.I., Danell E. and Taylor A.F., 2002. Use of different nitrogen sources by the edible ectomycorrhizal mushroom Cantharellus cibarius. Mycorrhiza 12: 131–137. [CrossRef] [PubMed] [Google Scholar]
  • Rincón A., Parladé J. and Pera J., 2005. Effects of ectomycorrhizal inoculation and the type of substrate on mycorrhization, growth and nutrition of containerised Pinus pinea L. seedlings produced in a commercial nursery. Ann. For. Sci. 62: 1–6. [EDP Sciences] [Google Scholar]
  • Rincón A., de Felipe M.R. and Fernández Pascual M., 2007. Inoculation of Pinus halepensis Miller with selected ectomycorrhizal fungi improves seedling establishemnt 2 years after planting in a degraded gypsum soil. Mycorrhiza 18: 23–32. [CrossRef] [PubMed] [Google Scholar]
  • Rincón A., Parladé J. and Pera J., 2007. Influence of the fertilisation method in controlled ectomycorrhizal inoculation of two Mediterranean pines. Ann. For. Sci. 64: 577–783. [CrossRef] [EDP Sciences] [Google Scholar]
  • Roldán A., Querejeta J.I., Albadalejo J. and Castillo V. 1996. Growth response of Pinus halepensis to inoculation with Pisolithus arhizus in a terraced rangeland amended with urban refuse. Plant Soil 179: 35–43. [CrossRef] [Google Scholar]
  • Smith S.E. and Read D.J., 1997. Mycorrhizal symbiosis. Academic Press, Cambridge, 605 p. [Google Scholar]
  • Taniguchi T., Kataoka R. and Futai K., 2008. Plant growth and nutrition in pine (Pinus thunbergii) seedlings and dehydrogenase and phosphatase activity of ectomycorrhizal root tips inoculated with seven individual ectomycorrhizal fungal species at high and low nitrogen conditions. Soil. Biol. Biochem. 40: 1235–1243. [CrossRef] [Google Scholar]
  • Termoshuizen A.J. and Ket P.C., 1991. Effects of NH4 and nitrate on mycorrhizal seedlings ofPinus sylvestris. Eur. J. For. Pathol. 21: 404–413. [CrossRef] [Google Scholar]
  • Väre H., 1989. Effect of nitrogen on the growth ofSuillus variegatus on mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Aquilo. Ser. Bot. 26: 19–24. [Google Scholar]
  • Villar-Salvador P., Planelles R., Enríquez E. and Peñuelas Rubira J., 2004. Nursery cultivation regimes, plant functional attributes, and field performance relatioships in the Mediterranean oak Quercus ilex L. For. Ecol. Manage. 196: 257–266. [CrossRef] [Google Scholar]
  • Villar-Salvador P., Puértolas J., Peñuelas J.L. and Planelles R., 2005. Effect of nitrogen ferillization in the nursery on the drought and frost resistance of Mediterranean forest species. Investig. Agrar. Sist. Recur. For. 14: 408–418. [Google Scholar]
  • Wallander H., 1994. A new hypothesis to explain allocation of dry matter between mycorrhizal fungi and pine seedlings in relation to nutrient supply. Plant Soil 168: 243–248. [CrossRef] [Google Scholar]
  • Wallander H. and Nylund J.E., 1991. Effects of excess nitrogen on carbohydrate concentration and mycorrhizae development of Pinus sylvestris L. seedlings. New Phytol. 119: 405–441. [CrossRef] [Google Scholar]
  • Wallander H. and Nylund J.E., 1992. Effects of excess nitrogen and phosphorous starvation on the extramatrical mycelium of ectomy-corrhizas of Pinus sylvestris L. New Phytol. 120: 495–503. [CrossRef] [Google Scholar]
  • Zhu J., Li F., Xu M., Kang H. and Wu X., 2008. The role of ectomycorrhizal fungi in alleviating pine decline in semiarid sandy soil of northern China: an experimental approach. Ann. For. Sci. 65: 304. [CrossRef] [EDP Sciences] [Google Scholar]