Free Access
Issue
Ann. For. Sci.
Volume 67, Number 7, October-November 2010
Article Number 706
Number of page(s) 14
DOI https://doi.org/10.1051/forest/2010031
Published online 19 August 2010
  • Agrimi M., Ciancio O., Portoghesi L., and Pozzoli R., 1991. I querceti di cerro e farnetto di macchia grande di Manziana: struttura, trattamento e gestione. Cellulosa e Carta 49: 25–49. [Google Scholar]
  • Alessandrini A., Blasi S., Biondi F., Chiocchini U., Di Filippo A., Eusepi G., 2008. Geopedologia e dendroauxoclimatologia di cedui di oltre turno. Alberi e Territorio. 6: 14–18. [Google Scholar]
  • Allen C.D., 2009. Climate-induced forest dieback: an escalating global phenomenon? Unasylva 60: 231–232. [Google Scholar]
  • Akkemik Ü., Çinar Yilmaz H., and Sevgl O., 2006. Cambial activity of the sessile oak (Quercus petraea) in Belgrade forest, Istanbul. Turkish Journal of Agriculture and Forestry 30: 429–438. [Google Scholar]
  • Amorini E., Biocca M., Manetti M.C., and Motta E., 1996. A dendroecological study in a declining oak coppice stand. Ann. For. Sci. 53: 731–742. [CrossRef] [EDP Sciences] [Google Scholar]
  • Anselmi N., Ferrari B., Nasini M., and Portoghesi L., 2008. Fitopatologia e selvicoltura di un bosco ceduo oltreturno. Alberi e Territorio 6: 19–22. [Google Scholar]
  • Arrigoni P.V., 1998. La vegetazione forestale. Boschi e macchie di Toscana. Regione Toscana, Giunta Regionale, Firenze. [Google Scholar]
  • Barbaroux C. and Bréda N. 2002. Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol. 22: 1201–1210. [Google Scholar]
  • Bascietto M., and Scarascia-Mugnozza G., 2004. A collection of functions to determine annual tree carbon increment via stem-analysis. Ann. For. Sci. 61: 597–602. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bianchi M. and La Marca O., 1984. I cedui di cerro nella provincia di Viterbo. Ricerche dendrometriche ed allometriche in relazione ad una ipotesi di matricinatura intensiva. Istituto di assestamento forestale dell’Università di Firenze, Ricerche Sperimentali di Dendrometria ed Auxometria 10: 41–70. [Google Scholar]
  • Biondi F., 1999. Comparing tree-ring chronologies and repeated timber inventories as forest monitoring tools. Ecol. Appl. 9: 216–227. [CrossRef] [Google Scholar]
  • Biondi F., and Swetnam T.W., 1987. Box-Jenkins models of forest interior tree-ring chronologies. Tree-ring Bull. 47: 71–95. [Google Scholar]
  • Biondi F., and Waikul K., 2004. DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput. Geosci. 30: 303–311. [Google Scholar]
  • Bouriaud O., Bréda N., Dupouey J.L., and Granier A., 2005. Is ring width a reliable proxy for stem-biomass increment? A case study in European beech. Can. J. For. Res. 35: 2920–2933. [CrossRef] [Google Scholar]
  • Brakel J.A., and van den Visser H., 1996. The influence of environmental conditions on tree-ring series of Norway spruce for different canopy and vitality classes. For. Sci. 42: 206–219. [Google Scholar]
  • Bréda N., Huc R., Granier A., and Dreyer E., 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63: 625–644. [CrossRef] [EDP Sciences] [Google Scholar]
  • Brunetti M., Maugeri M., Monti F., and Nanni T., 2006. Temperature and precipitation variability in Italy in the last two centuries from homogenised instrumental time series. Int. J. Climatol. 26: 345–381. [CrossRef] [Google Scholar]
  • Cherubini P., Gartner B.L., Tognetti R., Bräker O.U., Schoch W., and Innes J.L., 2003. Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol. Rev. 78: 119–148. [CrossRef] [Google Scholar]
  • Chhin S., Hogg E.H., Lieffers V.J., and Shongming H., 2008. Potential effects of climate change on the growth of lodgepole pine across diameter size classes and ecological regions. For. Ecol. Manage. 256: 1692–1703. [CrossRef] [Google Scholar]
  • Ciancio O. and Nocentini S., 2004. Il bosco ceduo: selvicoltura, assestamento, gestione, Accademia Scienze Forestali, Firenze. [Google Scholar]
  • Claps P., Giordano P., and Laguardia G., 2008. Spatial distribution of the average air temperatures in Italy: quantitative analysis. J. Hydrol. Eng. 13: 242–249. [CrossRef] [Google Scholar]
  • Cook E.R., and Peters K., 1981. The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-ring Bull. 41: 45–53. [Google Scholar]
  • Cook E.R. and Holmes R.L., 1986. Users Manual for Program ARSTAN, Laboratory of Tree-Ring Research, University of Arizona, Tucson, USA. [Google Scholar]
  • Cook E.R. and Kairiukstis L.A., 1990. Methods of Dendrochronology: Applications in Environmental Science, Kluwer Academic Publishers, Dordrecht, pp. 104–123. [Google Scholar]
  • Corcuera L., Camarero J.J., and Gil-Pelegrın E., 2004. Effects of a severe drought on growth and wood-anatomical properties of Quercus faginea. IAWA J. 25: 185–204. [Google Scholar]
  • Corcuera L., Camarero J.J., Sisó S., and Gil-Pelegrın E., 2006. Radial-growth and wood-anatomical changes in overaged Quercus pyrenaica coppice stands: functional responses in a new Mediterranean landscape. Trees 20: 91–98. [CrossRef] [Google Scholar]
  • Corona P., Romagnoli M., and Torrini L., 1995. Stem annual increments as ecobiological indicators in Turkey oak (Quercus cerris L.). Trees 10: 13–19. [Google Scholar]
  • Čufar K., de Luis M., Eckstein D., and Kajfež-Bogataj L., 2008. Reconstructing dry and wet summers in SE Slovenia from oak tree-ring series. Int. J. Biometeorol. 52: 607–615. [CrossRef] [PubMed] [Google Scholar]
  • David T.S., Henriques M.O., Kurz-Besson C., Nunes J., Valente F., Vaz M., 2007. Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol. 27: 793–803. [PubMed] [Google Scholar]
  • De Luis M., Novak K., Čufar K., and Raventós J., 2009. Size mediated climate–growth relationships in Pinus halepensis and Pinus pinea. Trees 23: 1065–1073. [CrossRef] [Google Scholar]
  • Desprez-Loustau M.L., Marçais B., Nageleisen L.M., Piou D., and Vannini A., 2006. Interactive effects of drought and pathogens in forest trees. Ann. For. Sci. 63: 597–612. [CrossRef] [EDP Sciences] [Google Scholar]
  • Di Filippo A., Biondi F., Cufar K., de Luis M., Grabner M., Maugeri M., 2007. Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J. Biogeogr. 34: 1873–1892. [CrossRef] [Google Scholar]
  • Dittmar C., Fricke W., and Elling W., 2006. Impact of late frost events on radial growth (Fagus sylvatica L.) in Southern Germany. Eur. J. For. Res. 125: 249–259. [CrossRef] [Google Scholar]
  • Dobbertin M., 2005. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur. J. For. Res. 124: 319–333. [CrossRef] [Google Scholar]
  • Drobyshev I., Linderson H., and Sonesson K., 2007. Temporal mortality pattern of pedunculate oaks in southern Sweden. Dendrochronologia 24: 97–108. [CrossRef] [Google Scholar]
  • Drobyshev I., Niklasson M., Eggertsson O., Linderson H., and Sonesson K., 2008. Influence of annual weather on growth of pedunculate oak in southern Sweden. Ann. For. Sci. 65: 512. [CrossRef] [EDP Sciences] [Google Scholar]
  • Dwyer J.P., Cutter B.E., and Wetteroff J.J., 1995. A dendrochronological study of black and scarlet oak decline in the Missouri Ozarks. For. Ecol. Manage. 75: 69–75. [CrossRef] [Google Scholar]
  • Efron B., and Tibshirani R., 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1: 54–75. [NASA ADS] [CrossRef] [Google Scholar]
  • Friedrichs D.A., Büntgen U., Frank D.C., Esper J., Neuwirth B., and Löffler J., 2009. Complex climate controls on 20th century oak growth in Central-West Germany. Tree Physiol. 29: 39–51. [CrossRef] [PubMed] [Google Scholar]
  • Guiot J., 1991. The bootstrapped response function. Tree-ring Bull. 51: 39–41. [Google Scholar]
  • Helama S., Läänelaid A., Raisio J., and Tuomenvirta H., 2009. Oak decline in Helsinki portrayed by tree-rings, climate and soil data. Plant Soil 319: 163–174. [CrossRef] [Google Scholar]
  • Hirayama D., Nanami S., Itoh A., and Yamakura T., 2008. Individual resource allocation to vegetative growth and reproduction in subgenus Cyclobalanopsis (Quercus, Fagaceae) trees. Ecol. Res. 23: 451–458. [CrossRef] [Google Scholar]
  • Hurrell J.W., 1995. Decadal trends in the North Atlantic oscillations: regional temperatures and precipitation. Science 269: 676–679. [CrossRef] [PubMed] [Google Scholar]
  • Kahle H.P., Karjalainen T., Schuck A., Ågren G.I., Kellomäki S., Mellert K.H., et al., 2008. Causes and consequences of forest growth trends in Europe. European Forest Institute Research Report 21 – Result of the RECOGNITION Project. Brill, Leiden. [Google Scholar]
  • Kirilenko A.P., and Sedjo R.A., 2007. Climate change impacts on forestry. PNAS 104: 19697–19702. [CrossRef] [Google Scholar]
  • Jump A.S., Hunt J.M., and Peñuelas J., 2006. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob. Change Biol. 12: 2163–2174. [Google Scholar]
  • La Marca O., 2004. Elementi di dendrometria. Patron Editore, Padova, Italy. [Google Scholar]
  • La Marca O., Scopigno D., and Tomaiuolo M., 2009. Primi risultati in prove di avviamento in un ceduo misto del Gargano. Forest@ – Rivista di Selvicoltura ed Ecologia Forestale. 6: 120–128. [CrossRef] [Google Scholar]
  • LeBlanc D., 1990. Relationships between breast-height and whole stem growth indices for red spruce on Whiteface Mountain, New York. Can. J. For. Res. 20: 1399–1407. [CrossRef] [Google Scholar]
  • Lebourgeois F., Cousseau G., and Ducos Y., 2004. Climate-tree-growth relationships of Quercus petraea Mill. stand in the Forest of Bercé (“Futaie des Clos”, Sarthe, France). Ann. For. Sci. 61: 361–372. [Google Scholar]
  • Lebourgeois F., 2006. Sensibilité au climat des Chênes sessile et pédonculé dans le réseau RENECOFOR. Comparaison avec les hêtraies. Rev. For. Fr. 58: 29–44. [Google Scholar]
  • Lilleskov E.A., Bruns T.D., Dawson T.E., and Camacho F.J., 2009. Water sources and controls on water-loss rates of epigeous ectomycorrhizal fungal sporocarps during summer drought. New Phytol. 182: 483–494. [CrossRef] [PubMed] [Google Scholar]
  • Linares J.C., Delgado-Huertas A., Camarero J.J., Merino J., and Carreira J.A., 2009. Competition and drought limit the response of water-use efficiency to rising atmospheric carbon dioxide in the Mediterranean fir Abies pinsapo. Oecologia 161: 611–624. [CrossRef] [PubMed] [Google Scholar]
  • Marçais B., and Bréda N., 2006. Role of an opportunistic pathogen in the decline of stressed oak trees. J. Ecol. 94: 1214–1223. [CrossRef] [Google Scholar]
  • Mariotti A., Ballabrera-Poy J., and Zeng N., 2005. Tropical influence on Euro-Asian autumn rainfall variability. Clim. Dyn. 24: 511–521. [CrossRef] [Google Scholar]
  • Mariotti A., Zeng N., Yoon J.H., Artale V., Navarra A., Alpert P., et al., 2008. Mediterranean water cycle changes: transition to drier 21st century conditions in observations and cmIP3 simulations. Environ. Res. Lett. 3: 044001. [CrossRef] [Google Scholar]
  • Martín-Benito D., Cherubini P., del Río M., and Cañellas I., 2008. Growth response to climate and drought in Pinus nigra Arn. trees of different crown classes. Trees 22: 363–373. [CrossRef] [Google Scholar]
  • McCabe G.J. and Markstrom S.L., 2007. A monthly water-balance model driven by a graphical user interface. US Geological Survey Open-File report 2007. [Google Scholar]
  • McDowell N., Pockman W.T., Allen C.D., Breshears D.D., Cobb N., Kolb T., 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 4: 719–739. [CrossRef] [PubMed] [Google Scholar]
  • Metsaranta J.M., and Lieffers V.J., 2009. Using dendrochronology to obtain annual data for modelling stand development: a supplement to permanent sample plots. Forestry 82: 163–173. [CrossRef] [Google Scholar]
  • Meyer F.D., and Bräker O.U., 2001. Climate response in dominant and suppressed spruce trees, Picea abies (L.) Karst., on a subalpine and lower montane site in Switzerland. Ecoscience 8: 105–114. [Google Scholar]
  • Mosca E., Montecchio L., Sella L., and Garbaye J., 2007. Short-term effect of removing tree competition on the ectomycorrhizal status of a declining pedunculate oak forest (Quercus robur L.). For. Ecol. Manage. 244: 129–140. [CrossRef] [Google Scholar]
  • Nahm M., Radoglou K., Halyvopoulos G., Geßler A., Rennenberg H., and Fotelli M.N., 2006. Physiological performance of beech (Fagus sylvatica L.) at its Southeastern distribution limit in Europe: seasonal changes in nitrogen, carbon and water balance. Plant Biol. 8: 52–63. [CrossRef] [Google Scholar]
  • Nogués Bravo D., Araújo M.B., Lasanta T., and López Moreno J.I., 2008. Climate change in Mediterranean mountains during the 21st Century. Ambio, 37: 280–285. [CrossRef] [PubMed] [Google Scholar]
  • Ohno Y., Umeki K., Watanabe I., Takiya M., Terazawa K., Yasaka M., 2009. Basal area growth and mortality of Betula maximowicziana affected by crown dieback in a secondary forest in Hokkaido, northern Japan. J. For. Res. 14: 37–43. [CrossRef] [Google Scholar]
  • Orwig D.A., and Abrams M.D., 1997. Variation in radial growth responses to drought among species, site, and canopy strata. Trees 11: 474–484. [CrossRef] [Google Scholar]
  • Parry M., Palutikof J., Hanson C., and Lowe J., 2008. Squaring up to reality. Nature reports climate change, 2, 68–70. URL http://www.nature.com/reports/climatechange. [Google Scholar]
  • Pedersen B.S., 1999. The mortality of Midwestern overstory oaks as a bioindicator of environmental stress. Ecol. Appl. 9: 1017–1027. [CrossRef] [Google Scholar]
  • Piovesan G., and Schirone B., 2000. Winter North Atlantic Oscillation effects on the tree rings of the Italian beech (Fagus sylvatica L.). Int. J. Biometeorol. 44: 121–127. [CrossRef] [PubMed] [Google Scholar]
  • Piovesan G., and Adams J.M., 2005. The evolutionary ecology of masting: does the environmental prediction hypothesis also have a role in mesic temperate forests? Ecol. Res. 20: 739–743. [Google Scholar]
  • Piovesan G., Biondi F., Bernabei M., Di Filippo A., and Schirone B., 2005. Spatial and altitudinal bioclimatic zones of the Italian peninsula identified from a beech (Fagus sylvatica L.) tree-ring network. Acta Oecol. 27: 197–210. [CrossRef] [Google Scholar]
  • Piovesan G., Biondi F., Di Filippo A., Alessandrini A., and Maugeri M., 2008. Drought-driven growth reduction in old beech (Fagus sylvatica) forests of the central Apennines, Italy. Glob. Change Biol. 14: 1–17. [Google Scholar]
  • Planchon O., Dubreuil V., Bernard V., and Blain S., 2008. Contribution of tree-ring analysis to the study of droughts in northwestern France (XIX–XXth century). Clim. Past Discussions 4: 249–270. [CrossRef] [Google Scholar]
  • Plutino M., 2006. Struttura e dinamica evolutiva dei boschi in stato di abbandono gestionale: il caso delle fustaie di cerro nell’Alto Lazio. Ph.D. Thesis, University of Tuscia, http://dspace.unitus.it/dspace/handle/2067/567. [Google Scholar]
  • Pokharel B., and Froese R.E., 2009. Representing site productivity in the basal area increment model for FVS-Ontario. For. Ecol. Manage. 258: 657–666. [CrossRef] [Google Scholar]
  • R Development Core Team, 2005. R: a language and environment for statistical computing, reference index version 2.2.1. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.Rproject.org. [Google Scholar]
  • Ragazzi A., Moricca S., Turco E., and Dellavalle I., 2002. Dendroclimatic analysis of Quercus robur infected with Fusarium eumartii. Phytopathol. Mediterr. 41: 131–137. [Google Scholar]
  • Romagnoli M., and Codipietro G., 1996. Pointer years and growth in Turkey oak (Quercus cerris L) in Latium (central Italy). A dendroclimatic approach. Ann. Sci. For. 53: 671–684. [Google Scholar]
  • Rosenzweig C., Karoly D., Vicarelli M., Neofotis P., Wu Q., Casassa G., 2008. Attributing physical and biological impacts to anthropogenic climate change. Nature 453: 353–357. [CrossRef] [PubMed] [Google Scholar]
  • Rozas V., 2005. Dendrochronology of pedunculate oak (Quercus robur L.) in an old-growth pollarded woodland in northern Spain: tree-ring growth responses to climate. Ann. For. Sci. 62: 209–218. [CrossRef] [EDP Sciences] [Google Scholar]
  • Running S.W., 2008. Climate change: ecosystem disturbance, carbon, and climate. Science 321: 652–653. [CrossRef] [PubMed] [Google Scholar]
  • Salter P.J., and Williams J.B., 1967. The influence of texture on the moisture characteristics of soils. A method of estimating the available-water capacities of profiles in the field. Eur. J. Soil Sci. 18: 174–181. [Google Scholar]
  • Sarris D., Christodoulakis D., and Körner C., 2007. Recent decline in precipitation and tree growth in the eastern Mediterranean. Glob. Change Biol. 13: 1187–1200. [Google Scholar]
  • Schröter D., Cramer W., Leemans R., 2005. Ecosystem service supply and vulnerability to global change in Europe. Science 5752: 1333–1337. [CrossRef] [Google Scholar]
  • Selås V., Hogstad O., Andersson G., and Von Proschwitz T., 2001. Population cycles of autumnal moth, Epirrita autumnata, in relation to birch mast seeding. Oecologia, 129: 213–219. [CrossRef] [PubMed] [Google Scholar]
  • Standovár T., and Somogyi Z., 1998. Corresponding patterns of site quality, decline and tree growth in a sessile oak stand. Eur. J. For. Pathol. 28: 133–144. [CrossRef] [Google Scholar]
  • Stokes M.A. and Smiley T.L., 1996. An introduction to tree-ring dating. Reprint of 1968 U. of Chicago Press ed. University of Arizona Press, Tucson, USA. [Google Scholar]
  • Swaty R.L., Deckert R.J., Whitham T.G., and Gehring C.A., 2004. Ectomycorrhizal abundance and community composition shifts with drought: predictions from tree rings. Ecology 85: 1072–1084. [CrossRef] [Google Scholar]
  • Tardif J.C., Conciatori F., Nantel P., and Gagnon D., 2006. Radial growth and climate responses of white oak (Quercus alba) and northern red oak (Quercus rubra) at the northern distribution limit of white oak in Quebec, Canada. J. Biogeogr. 33: 1657–1669. [CrossRef] [Google Scholar]
  • Van Mantgem P.J., Stephenson N.L., Byrne J.C., Daniels L.D., Franklin J.F., Fulé P.Z., 2009. Widespread increase of tree mortality rates in the Western United States. Science 323: 521–524. [CrossRef] [PubMed] [Google Scholar]
  • Vannini A., and Valentini R., 1994. Influence of water relations on Quercus cerris-Hypoxylon mediterraneum interaction: a model of drought-induced susceptibility to a weakness parasite. Tree Physiol. 14: 129–139. [PubMed] [Google Scholar]
  • Vannini A., Lucero G., Anselmi N., and Vettraino A.M., 2009. Response of endophytic Biscogniauxia mediterranea to variation in leaf water potential of Quercus cerris. For. Pathol. 39, 8–14. [CrossRef] [Google Scholar]
  • Vieira J., Campelo F., and Nabais C., 2009. Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees, 23: 257–265. [CrossRef] [Google Scholar]
  • Voelker S.L., Muzika R.S., and Guyette R.P., 2008. Individual tree and stand level influences on the growth, vigor, and decline of Red oaks in the Ozarks. For. Sci. 54: 8–20. [Google Scholar]
  • Weber P., Bugmann H., and Rigling A., 2007. Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-Alpine dry valley. J. Veg. Sci. 18: 777–792. [CrossRef] [Google Scholar]
  • Wigley T.M.L., Briffa K.R., and Jones P.D., 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. 23: 201–213. [Google Scholar]
  • Zweifel R., Zimmermann L., Zeugin F., and Newbery D.M., 2006. Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J. Exp. Bot. 57: 1445–1459. [CrossRef] [PubMed] [Google Scholar]