Free Access
Ann. For. Sci.
Volume 67, Number 8, December 2010
Article Number 808
Number of page(s) 8
Section Original articles
Published online 28 October 2010
  • Adams W.T., Neale D.B., and Lopstra C.A., 1988. Verifying controlled crosses in conifer tree-improvement programs. Silvae Genet. 37: 147–152. [Google Scholar]
  • Adams W.T., Hipkins V.D., Burczyk J., and Randall W.K., 1997. Pollen contamination trends in a maturing Douglas-fir seed orchard. Can. J. For. Res. 27: 131–134. [CrossRef] [Google Scholar]
  • Allen G.S. and Owens J.N., 1972. The Life History of Douglas-fir, Ottawa, Canada, Can. For. Serv. 139 p. [Google Scholar]
  • Anonymous, 1976. Twentieth annual report on cooperative tree improvement and hardwood research program, North Carolina State University, Raleigh, USA. [Google Scholar]
  • Askew G.R., 1992. Potential genetic improvement due to supplemental mass pollination management in conifer seed orchards. For. Ecol. Manage. 47: 135–147. [CrossRef] [Google Scholar]
  • Bell G.D. and Fletcher A.M., 1978. Computer organised orchard layouts (COOL) based on the permutated neighbourhood design concept, Silvae Genet. 27: 223–225. [Google Scholar]
  • Bridgwater F.E., Bramlett D.L., and Matthews F.R., 1987. Supplemental mass pollination is feasible on an operational scale. In: Proc. 19th South. For. Tree Improv. Conf., College Sta, TX, pp. 216–222. [Google Scholar]
  • Cockerham C., 1967. Group inbreeding and coancestry. Genetics 56: 89–104. [PubMed] [Google Scholar]
  • Daniels J.D., 1978. Efficacy of supplemental mass pollination in a Douglas-fir seed orchard. Silvae Genet. 27: 52–58. [Google Scholar]
  • Denti D., Schoen D.J., 1988. Self-fertilization rates in white spruce: effect of pollen and seed production. J. Hered. 79: 284–288. [Google Scholar]
  • Doyle J.J. and Doyle J.L., 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15. [Google Scholar]
  • Edwards D.G.W. and El-Kassaby Y.A., 1995. Douglas-fir genotypic response to seed stratification. Seed Sci Tech. 23: 771–778. [Google Scholar]
  • El-Kassaby Y.A., 1992. Domestication and genetic diversity – should we be concerned? For. Chron. 68: 687–700. [Google Scholar]
  • El-Kassaby Y.A. and Askew G.R., 1998. Seed orchards and their genetics. In: Mandal A.K., Gibson G.L. (Ed.), Forest genetics and tree breeding, CBS Publishers and Distributors, Daryaganj, New Delhi, India, pp. 103–111. [Google Scholar]
  • El-Kassaby Y.A. and Davidson R., 1990. Impact of crop management practices on the seed crop genetic quality in a Douglas-fir seed orchard. Silvae Genet. 39: 230–237. [Google Scholar]
  • El-Kassaby Y.A. and Davidson R. 1991. Impact of pollination environment manipulation on the apparent outcrossing rate in a Douglas-fir seed orchard. Heredity 66: 55–59. [CrossRef] [Google Scholar]
  • El-Kassaby Y.A. and Ritland K., 1986. The relation of outcrossing and contamination to reproductive phenology and supplemental mass pollination in a Douglas-fir seed orchard. Silvae Genet. 35: 240–244. [Google Scholar]
  • El-Kassaby Y.A., Parkinson J., and Devitt W.J.B., 1986. The effect of crown segment on the mating system in a Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seed orchard. Silvae Genet. 35: 149–155. [Google Scholar]
  • El-Kassaby Y.A., Ritland K., Fashler A.M.K., and Devitt W.J.B., 1988. The role of reproductive phenology upon the mating structure of a Douglas-fir seed orchard. Silvae Genet. 37: 76–82. [Google Scholar]
  • El-Kassaby Y.A., Edwards D.G.W., and Cook C., 1990. Impact of crop management practices on seed yield in a Douglas-fir seed orchard. Silvae Genet. 39: 226–230. [Google Scholar]
  • El-Kassaby Y.A., Barnes S., Cook C., and MacLeod D.A., 1993. Supplemental mass pollination success rate in a mature Douglas-fir seed orchard. Can. J. For. Res. 23: 1069–1099. [Google Scholar]
  • El-Kassaby Y.A., Stoehr M.U., Reid D., Walsh C.G., and Lee T.E., 2007. Clonal-row versus random seed orchard designs: interior spruce mating system evaluation. Can. J. For. Res. 37: 690–696. [CrossRef] [Google Scholar]
  • Erickson V.J. and Adams W.T., 1990. Mating system variation among individual ramets in a Douglas-fir seed orchard. Can. J. For. Res. 20: 1672–1675. [CrossRef] [Google Scholar]
  • Eriksson G., Jonsson A., and Lindgren D., 1973. Flowering in a clonal trial of Picea abies Karst. Stud. For. Suec. 110: 3–45. [Google Scholar]
  • Fashler A.M.K. and Devitt W.J.B., 1980. A practical solution to Douglas-fir seed orchard pollen contamination. For. Chron. 56: 237–240. [Google Scholar]
  • Fashler A.M.K. and El-Kassaby Y.A., 1987. The effect of water spray cooling treatment on reproductive phenology in a Douglas-fir seed orchard. Silvae Genet. 36: 245–249. [Google Scholar]
  • Fast W., Dancik B.P., and Bower R.C., 1986. Mating system and pollen contamination in a Douglas-fir clone bank. Can. J. For. Res. 16: 1314–1319. [CrossRef] [Google Scholar]
  • Franklin E.C., 1974. Pollination in slash pine: first come, first served. In: Proceedings of a Colloquium, Seed yield from southern pine seed orchards In: Kraus J. (Ed.), Georgia Forestry Center, Macon, GA, pp. 15–20. [Google Scholar]
  • Funda T., Chen C., Liewlaksaneeyanawin C., Kenawy A., and El-Kassaby Y.A., 2008. Pedigree and mating system analyses in a western larch (Larix occidentalis Nutt.) experimental population. Ann. For. Sci. 65: 705. [CrossRef] [EDP Sciences] [Google Scholar]
  • Griffin A.R., 1982. Clonal variation in radiata pine seed orchards. I. Some flowering, cone and seed production traits. Aust. For. Res. 12: 295–302. [Google Scholar]
  • Hansen O.K. and Kjaer E.D., 2006. Paternity analysis with microsatellites in a Danish Abies nordmanniana clonal seed orchard reveals dysfunctions. Can. J. For. Res. 36: 1054–1058. [CrossRef] [Google Scholar]
  • Kalinowski S.T., Taper M.L., and Marshall T.C., 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16: 1099–1106. [CrossRef] [Google Scholar]
  • Krutovskii K.V., Vollmer S.S., Sorensen F.C., Adams W.T., and Strauss S.H., 1997. Effects of megagametophyte removal on DNA yield and early seedling growth in coastal Douglas-fir. Can. J. For. Res. 27: 964–968. [CrossRef] [Google Scholar]
  • Lindgren D. and Mullin T.J., 1998. Relatedness and status number in seed orchard crops. Can. J. For. Res. 28: 276–283. [CrossRef] [Google Scholar]
  • Moriguchi Y., Taira H., Tani N., and Tsumura Y., 2004. Variation of paternal contribution in a seed orchard of Cryptomeria japonica determined using microsatellite markers. Can. J. For. Res. 34: 1683–1690. [CrossRef] [Google Scholar]
  • Moriguchi Y., Tani N., Itoo S., Kanehira F., Tanaka K., Yomogida H., Taira H., and Tsumura Y., 2005. Gene flow and mating system in five Cryptomeria japonica D. Don seed orchards as revealed by analysis of microsatellite markers. Tree Genet. Genomes. 1: 174–183. [Google Scholar]
  • Nakamura R.R. and Wheeler N.C., 1992. Pollen competition and paternal success in Douglas-fir. Evolution 46: 846–851. [CrossRef] [PubMed] [Google Scholar]
  • Namkoong G., Kang H.C., and Brouard J.S., 1988. Tree breeding: principles and strategies, Monographs on theoretical and applied genetics. II, Springer-Verlag, New York, USA. [Google Scholar]
  • Orr-Ewing A.L., 1954. Inbreeding experiments with the Douglas-fir. For. Chron. 30: 7–21. [Google Scholar]
  • Orr-Ewing A.L., 1965. Inbreeding and single-crossing in Douglas-fir. For. Sci. 11: 279–290. [Google Scholar]
  • Owens J.N. and Simpson S.J., 1982. Further observations on the pollination mechanism and seed production of Douglas-fir. Can. J. For. Res. 12: 431–434. [CrossRef] [Google Scholar]
  • Owens J.N., Simpson S.J., and Molder M., 1981. The pollination mechanism and the optimal time of pollination in Douglas-fir (Pseudotsuga menziesii). Can. J. For. Res. 11: 36–50. [CrossRef] [Google Scholar]
  • Ritland K. and El-Kassaby Y.A., 1985. The nature of inbreeding in a seed orchard of Douglas-fir as shown by an efficient multilocus model. Theor. Appl. Genet. 71: 375–384. [PubMed] [Google Scholar]
  • Shaw D.V. and Allard R.W., 1982. Estimation of outcrossing rates in Douglas-fir using isozyme markers. Theor. Appl. Genet. 62: 113–120. [CrossRef] [PubMed] [Google Scholar]
  • Silen R.R. and Keane G., 1969. Cooling a Douglas-fir seed orchard to avoid pollen contamination, USDA For. Serv. Res. Note PNW-101. [Google Scholar]
  • Slavov G.T., Howe G.T., and Adams W.T., 2005. Pollen contamination and mating patterns in a Douglas-fir seed orchard as measured by simple sequence repeat markers. Can. J. For. Res. 35: 1592–1603. [CrossRef] [Google Scholar]
  • Slavov G.T., Howe G.T., Yakovlev I., Edwards K.J., Krutovskii K.V., Tuskan G.A., Carlson J.E., Strauss S.H., and Adams W.T., 2004. Highly variable SSR markers in Douglas-fir: Mendelian inheritance and map locations. Theor. Appl. Genet. 108: 873–880. [CrossRef] [PubMed] [Google Scholar]
  • Sorensen F.C., 1971. Estimate of self-fertility in coastal Douglas-fir from inbreeding studies. Silvae Genet. 20: 115–120. [Google Scholar]
  • Sorensen F.C., 1982. The roles of polyembryony and embryo viability in the genetic system of conifers. Evolution 36: 725–733. [CrossRef] [PubMed] [Google Scholar]
  • Stoehr M.U. and Newton C.H., 2002. Evaluation of mating dynamics in a lodgepole pine seed orchard using chloroplast DNA markers. Can. J. For. Res. 32: 469–476. [CrossRef] [Google Scholar]
  • Stoehr M.U., Orvar B.L., Vo T.M., Gawley J.R., Webber J.E., and Newton C.H., 1998. Application of a chloroplast DNA marker in seed orchard management evaluations of Douglas-fir. Can. J. For. Res. 28: 187–195. [CrossRef] [Google Scholar]
  • Stoehr M.U., Webber J.E., and Woods J.H., 2004. Protocol for rating seed orchard seedlots in British Columbia: quantifying genetic gain and diversity. Forestry 77: 297–303. [CrossRef] [Google Scholar]
  • Stoehr M.U., Mehl H., Nicholson G., Pieper G., and Newton C.H., 2006. Evaluating supplemental mass pollination efficacy in a lodgepole pine orchard in British Columbia using chloroplast DNA markers. New For. 31: 83–90. [CrossRef] [Google Scholar]
  • Wakeley P.C., Wells O.O., and Campbell T.E., 1966. Mass production of shortleaf × slash pine hybrids by pollinating unbagged female flowers. In: Joint Proceedings of the Second Genetics Workshop of the Society of American Foresters and the Seventh Lake States Forest Tree Improvement Conference, USDA Forest Service, St. Paul, USA, Res. Pap. NC-6, pp. 78–79. [Google Scholar]
  • Webber J.E. and Painter R.A., 1996. Douglas-fir pollen management manual. Second edition, Res. Program WP 02/96. B.C. Ministry of Forests, Victoria, Canada. [Google Scholar]
  • Woods J.H., 2005. Methods for estimating gamete contributions to orchard seed crops and vegetative lots in British Columbia. B.C. Ministry of Forests and Range, Research Branch, Victoria, B.C. Tech Rep 25. [Google Scholar]
  • Woods J.H. and Heaman J.C., 1989. Effect of different inbreeding levels on filled seed production in Douglas-fir. Can. J. For. Res. 19: 54–59. [CrossRef] [Google Scholar]
  • Wright S., 1931. Evolution in Mendelian populations. Genetics 16: 97–159. [PubMed] [Google Scholar]
  • Yazdani R., Hadders G., and Szmidt A., 1986. Supplemental mass pollination in a seed orchard of Pinus sylvestris L. investigated by isozyme analyses. Scand. J. For. Res. 1: 309–315. [CrossRef] [Google Scholar]