Free Access
Issue
Ann. For. Sci.
Volume 64, Number 5, July-August 2007
Page(s) 511 - 520
DOI https://doi.org/10.1051/forest:2007028
Published online 17 July 2007
References of  Ann. For. Sci. 64 (2007) 511-520
  1. Avery T.E., Burkhart H.E., Forest measurements, 5th ed., McGraw-Hill, New York, 2002.
  2. Balboa-Murias M.A., Rojo A., Álvarez J.G., Merino A., Carbon and nutrient stocks in mature Quercus robur L. stands in NW Spain, Ann. For. Sci. 63 (2006) 557-565 [CrossRef] [EDP Sciences].
  3. Barrio M., Álvarez González J.G., Díaz-Maroto I.J., Elaboración de una tarifa con clasificación de productos para Quercus robur L. en Galicia basada en un modelo de volumen porcentual, Invest. Agrar.: Sist. Recur. For. 13 (2004) 506-517.
  4. Barrio M., Diéguez-Aranda U., Site quality of pedunculate oak (Quercus robur L.) stands in Galicia (northwest Spain), Eur. J. For. Res. 124 (2005) 19-28.
  5. Behre C.E., Preliminary notes on studies of tree form, J. For. 21 (1923) 507-511.
  6. Belsey D.A., Conditioning diagnostics, collinearity and weak data in regression, John Wiley & Sons, Inc., New York, 1991.
  7. Bi H., Trigonometric variable-form taper equations for Australian eucalyptus, For. Sci. 46 (2000) 397-409.
  8. Brink C., Gadow K.v., On the use of growth and decay functions for modelling stem profiles, EDV in Medizin und Biologie 17 (1985) 20-27.
  9. Bruce D., Wensel L.C., Modelling forest growth: approaches, definitions and problems, in: Ek A.R., Shifley S.R., Burke T.E. (Eds.), Forest Growth Modelling and Prediction Conference, USDA For. Ser. Gen. Tech. Rep. NC-120, 1988, p. 1-8.
  10. Bullock B.P., Burkhart H.E., Equations for predicting green weight of loblolly pine trees in the south, South. J. Appl. For. 27 (2003) 153-159.
  11. Burkhart H.E., Cubic-foot volume of loblolly pine to any merchantable top limit, South. J. Appl. For. 1 (1977) 7-9.
  12. Cailliez F., Estimación del volumen forestal y predicción del rendimiento, FAO, Roma, 1980.
  13. Cao Q.V., Burkhart H.E., Max T.A., Evaluations of two methods for cubicfoot volume prediction of loblolly pine to any merchantable limit, For. Sci. 26 (1980) 71-80.
  14. Castedo F., Modelo dinámico de crecimiento para las masas de Pinus radiata D. Don en Galicia. Simulación de alternativas selvícolas con inclusión del riesgo de incendio, Doctoral Thesis, Escola Politécnica Superior, University of Santiago de Compostela, 2004.
  15. Clark A., Thomas C.E., Weight equations for southern tree species. When are and what is needed, in: Daniels R.F., Dunhan P.H. (Eds.), Proceedings of the 1983 southern forest biomass workshop, USDA Forest Service, Southern Forest Experimental Station, 1984, pp. 100-106.
  16. Clutter J.L., Development of taper functions from variable-top merchantable volume equations, For. Sci. 26 (1980) 117-120.
  17. Corral-Rivas J., Diéguez-Aranda U., Castedo F., Corral S., A merchantable volume system for major pine species in El Salto, Durango (Mexico). For. Ecol. Manage. 238 (2007) 118-129.
  18. Demaerschalk J., Converting volume equations to compatible taper equations, For. Sci. 18 (1972) 241-245.
  19. Díaz-Fernández P.M., Jiménez P., Martín S., De Tuero Y., Reyna M., Gil L., Regiones de procedencia de Quercus robur L., Quercus petraea (Matt.) Liebl, y Quercus humillis (Miller), MAPA, Madrid, 1995.
  20. Díaz-Maroto I.J., Vila-Lameiro P., Silva-Pando F.J., Autoécologie des chaînes de Quercus robur L. en Galicie (Espagne), Ann. For. Sci. 62 (2005) 737-749 [CrossRef] [EDP Sciences].
  21. Diéguez-Aranda U., Castedo-Dorado F., Álvarez-González J.G., Rojo A., Compatible taper function for Scots pine (Pinus sylvestris L.) plantations in north-western Spain, Can. J. For. Res. 36 (2006) 1190-1205 [CrossRef].
  22. Fang Z., Borders B.E., Bailey R.L., Compatible volume-taper models for loblolly and slash pine based on a system with segmented-stem form factors, For. Sci. 46 (2000) 1-12.
  23. Furnival G.M., An index for comparing equations used in constructing volume tables, For. Sci. 7 (1961) 337-341.
  24. Goulding C.J., Murray J., Polynomial taper equations that are compatible with tree volume equations, N. Z. J. For. Sci. 5 (1976) 313-322.
  25. Gregoire T.G., Schabenberger O., Barrett J.P., Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements, Can. J. For. Res. 25 (1995) 137-156.
  26. Gregoire T.G., Schabenberger O., A non-linear mixed-effects model to predict cumulative bole volume of standing trees, J. Appl. Stat. 23 (1996) 257-271 [CrossRef].
  27. Harvey A.C., Estimating regression models with multiplicative heteroscedasticity, Econometrica 44 (1976) 461-465.
  28. Hirsch R.P., Validation samples, Biometrics, 47 (1991) 1193-1194.
  29. Huang S., Yang Y., Wang Y., A critical look at procedures for validating growth and yield models, in: Amaro A., Reed D., Soares P. (Eds.), Modelling forest systems, CAB International, Wallingford, Oxfordshire, UK, 2003, 271-293.
  30. Judge G.G., Carter R., Griffiths, W.E., Lutkepohl H., Lee T.C., Introduction to the theory and practice of econometrics, John Wiley & Sons, New York, 1988.
  31. Kozak A., A variable-exponent taper equation, Can. J. For. Res. 18 (1988) 1363-1368.
  32. Kozak A., Effects of multicollinearity and autocorrelation on the variableexponent taper functions, Can. J. For. Res. 27 (1997) 619-629 [CrossRef].
  33. Kozak A., My last words on taper equations, For. Chron. 80 (2004) 507-515.
  34. Kozak A., Kozak R.A., Does cross validation provide additional information in the evaluation of regression models? Can. J. For. Res. 33 (2003) 976-987 [CrossRef].
  35. McTague J.P., Bailey R.L., Simultaneous total and merchantable volume equations and a compatible taper function for loblolly pine, Can. J. For. Res. 17 (1987) 87-92.
  36. Muhairwe C.K., Taper equations for Eucalyptus pilularis and Eucalyptus grandis for the north coast in New South Wales, Australia, For. Ecol. Manage. 113 (1999) 251-269 [CrossRef].
  37. Myers R.H., Classical and modern regression with applications, 2nd ed., Duxbury Press, Belmont, California, 1990.
  38. Neter J., Kutner M.H., Nachtsheim C.J., Wasserman W., Applied linear statistical models, 4th ed., McGraw-Hill, New York, 1996.
  39. Newnham R., Variable-form taper functions for four Alberta tree species, Can. J. For. Res. 22 (1992) 210-223.
  40. Parresol B.R., Additivity of nonlinear biomass equations, Can. J. For. Res. 31 (2001) 865-878 [CrossRef].
  41. Pretzsch H., Biber P., Durský J., Gadow K.v., Hasenauer H., Kändler G., Kenk G., Kublin E., Nagel J., Pukkala T., Skovsgaard J.P., Sodtke R., Sterba, H., Recommendations for standardized documentation and further development of forest growth simulators, Forstw. Cbl. 121 (2002) 138-151 [CrossRef].
  42. Rawlings J.O., Sastry G.P., Dickey D.A, Applied Regression Analysis: A research tool, Springer-Verlag, New York, 1998
  43. Reed D., Green E., Compatible stem taper and volume ratio equations, For. Sci. 30 (1984) 977-990.
  44. Riemer T., Gadow K.v., Sloboda B., Ein Modell zur Beschreibung von Baumschäften, Allg. Forst-Jagdztg. 166 (1995) 144-147.
  45. Rose C.E., Lynch T.B., Estimating parameters for tree basal area growth with a system of equations and seemingly unrelated regressions, For. Ecol. Manage. 148 (2001) 51-61 [CrossRef].
  46. Ryan T.P., Modern regression methods, John Wiley & Sons, New York, 1997.
  47. SAS Institute Inc., SAS/STAT $^\circledR$ 9.1.2, User's Guide,. Cary, NC: SAS Institute Inc, 2004.
  48. SAS Institute Inc., SAS/ETS $^\circledR$ 9.1.2. User's Guide, Cary, NC: SAS Institute Inc., 2004.
  49. SAS Institute Inc., SAS OnlineDoc $^\circledR$ 9.1.2, Cary, NC: SAS Institute Inc., 2004.
  50. Spurr S.H., Forest Inventory, The Ronald Press Co., New York, 1952.
  51. Tarp-Johansen M.J., Skovsgaard J.P., Madsen S.F., Johannsen V.K., Skovgaard I., Compatible stem taper and stem volume functions for oak (Quercus robur L. and Quercus petraea (Matt.) liebl.) in Denmark, Ann. Sci. For. 54 (1997) 577-595.
  52. Tasissa G., Burkhart H.E., Amateis R.L., Volume and taper equations for thinned and unthinned loblolly pine trees in Cutover, site-prepared plantations, South. J. Appl. For. 21 (1997) 146-152.
  53. Teshome T., A ratio method for predicting stem merchantable volume and associated taper equations for Cupressus lusitanica, Ethiopia, For. Ecol. Manage. 204 (2005) 171-179 [CrossRef].
  54. Tomé M., Ribeiro F., Soares P., O modelo Globulus 2.1, Universidade Técnica de Lisboa-ISA, GIMREF, 2001.
  55. Trincado G., Gadow K.v., Zur Sortimentschätzung stehender Laubbäume, Cent.bl. Gesamte Forstwes. 113 (1996) 27-38.
  56. Trincado G., Gadow K.v., Tewari V.P., Comparison of three stem profile equations for Quercus robur L. South Afr. For. J. 177 (1996) 23-29.
  57. Valdez J.R., Lynch T.B., Ecuaciones para estimar volumen comercial y total en rodales aclareados de pino patula en Puebla, México, Agrociencia 34 (2000) 747-758.
  58. Van Deusen P.C., Sullivan A.D., Matney T.G., A prediction system for cubic foot volume of loblolly pine applicable through much of its range, South. J. Appl. For. 5 (1981) 186-189.
  59. Van Deusen P.C., Matney, T.G., Sulivan A.D., A compatible system for predicting the volume and diameter of sweetgum tree to any height, South. J. Appl. For. 6 (1982) 159-163.
  60. Vanclay J.K., Skovsgaard J.P., Evaluating forest growth models, Ecol. Modell. 98 (1997) 1-12 [CrossRef].
  61. West P.W., Ratkowsky D.A., Davis A.W., Problems of hypothesis testing of regressions with multiple measurements from individual sampling units, For. Ecol. Manage. 7 (1984) 207-224 [CrossRef].
  62. Xunta de Galicia, O monte Galego en cifras, Dirección Xeral de Montes e Medio Ambiente Natural, Santiago de Compostela, 2001.
  63. Zellner A., An efficient method of estimating seemingly unrelated regressions and test for aggregation bias, J. Am. Stat. Assoc. 57 (1962) 348-368 [CrossRef].
  64. Zimmerman D.L., Núñez-Antón V., Parametric modelling of growth curve data: An overview (with discussion), Test 10 (2001) 1-73 [CrossRef] [MathSciNet].