Free Access
Issue
Ann. For. Sci.
Volume 67, Number 8, December 2010
Article Number 815
Number of page(s) 7
Section Original articles
DOI https://doi.org/10.1051/forest/2010054
Published online 28 October 2010
  • ASTM 1996. Standard Test Method for preparation of extractives-free wood, ASTM D 1105–1196. [Google Scholar]
  • Barlow C.Y., 1997. Materials selection for musical instruments, In: Proceedings of the Institute of Acoustics, vol. 19, pp. 69–78. [Google Scholar]
  • Bordonné P.A., 1989. Module dynamique et frottement interieur dans le bois, mesures sur poutres flottantes en vibrations naturelles. Ph.D. thesis, Institut National Polytechnique de Lorraine, 109 p. [Google Scholar]
  • Bork I. and Meyer J., 1985. On the tonal evaluation of xylophones. Physikalisch- Technische Bundesanstall Braunschweig, Germany. [Google Scholar]
  • Brancheriau L., 2002. Expertise mécanique des sciages par analyses des vibrations dans le domaine acoustique. Ph.D. thesis, Université de la Méditerranée-Aix-Marseille II, Marseille, 267 p. [Google Scholar]
  • Brancheriau L., 2006. Influence of cross section dimensions on Timoshenko’s shear factor – Application to wooden beams in free-free flexural vibration. Ann. For. Sci. 63: 319–321. [CrossRef] [EDP Sciences] [Google Scholar]
  • Brancheriau L., Baillères H., Détienne P., Kronland R., and Gril J., 2006a. Key signal and wood anatomy parameters related to the acoustic quality of wood for xylophone-type percussion instruments. J. Wood Sci. 52: 270–273. [CrossRef] [Google Scholar]
  • Brancheriau L., Baillères H., Détienne P., Kronland R., and Metzger B., 2006b. Classifying xylophone bar materials by perceptual, signal processing and wood anatomcal analysis. Ann. For. Sci. 63: 73–81. [CrossRef] [EDP Sciences] [Google Scholar]
  • Brancheriau L., Baillères H., and Sales C., 2006c. Acoustic resonance of xylophone bars: experimental and analytic approaches of frequency shift phenomenon during the tuning operation of xylophone bars. Wood Sci. Technol. 40: 94–106. [CrossRef] [Google Scholar]
  • Brémaud I., 2006. Diversité des bois utilisés ou utilisables en facture d’instruments de musique. Ph.D. thesis, Université Montpellier II, Montpellier, 295 p. [Google Scholar]
  • Bucur V., 2006. Acoustics of wood, 2nd edition, Springer, 393 p. [Google Scholar]
  • Coulibaly A., 2003. Profiles of forage ressource: Mali, Food and Agriculture Organization of the United Nations, http://www.fao.org/. [Google Scholar]
  • Détienne P., Oyono F., Durrieu de Madron L., Demarquez B., and Nasi R., 1998. L’analyse de cernes: applications aux études croissance de quelques essences en peuplement naturels de forêt dense africaine, Montpellier, CIRAD-Forêt. [Google Scholar]
  • Dunlop J. and Shaw M., 1991. Acoustic properties of some Australian woods. Catgut Acoust. Soc. J. 1: 17–20. [Google Scholar]
  • Durrieu De Madron L., Nasi R., and Détienne P., 2000. Accroissements diamétriques de quelques essences en forêt dense africaine. Bois For. Trop. 263: 63–74. [Google Scholar]
  • Gominho J., Figueira J., Rodrigues J.C., and Pereira H., 2001. Within-tree variation of heartwood, extractives and wood density in the eucalypt hybrid urograndis (Eucalyptus grandis × E. urophylla). Wood and Fiber Sci. 33: 3–8. [Google Scholar]
  • Holz D., 1996. Acoustically important properties of xylophone-bar materials: can tropical woods be replaced by European species? Acta Acustica 82: 878–884. [Google Scholar]
  • ISO 3129, 1975. Bois-Méthodes d’échantillonnage et conditions générales pour les essais physiques et mécaniques, 4 p. [Google Scholar]
  • Kubojima Y., Okano T., and Ohta M., 1997. Effect of annual ring widths on structural and vibrational properties of wood. Mokuzai Gakkaishi. 43: 634–641. [Google Scholar]
  • Leclercq A., 1979. Influence du milieu sur les propriétés physico-mécaniques du bois de hêtre (Fagus silvatica). Bull. Rech. Agron. Gembloux 14: 213–240. [Google Scholar]
  • Leclercq A., 1982. Influence du milieu sur la structure anatomique du bois de hêtre (Fagus silvatica L). Bull. Rech. Agron. Gembloux 17: 363–376. [Google Scholar]
  • Mariaux A., 1967. Les cernes dans les bois tropicaux africains, nature et périodicité. Bois For. Trop. 113: 3–14. [Google Scholar]
  • Matsunaga M., Minato K., and Nakatsubo F., 1999. Vibrational properties changes of spruce wood by impregnation with water soluble extractives of pernambuco (Guilandina echinata Spreng.). J. Wood Sci. 45: 470–474. [CrossRef] [Google Scholar]
  • Nasi R. and Sabatier M., 1988a. Inventaire des ressources ligneuses au Mali. Rapport de synthèse, première phase, Les formations végétales. Ministère chargé des Ressources Naturelles et de l’Élevage, Direction Nationale des Eaux et Forêts, BDPA/SCET-AGRI, CTFT (CIRAD), 205 p. [Google Scholar]
  • Nasi R. and Sabatier M,. 1988b. Inventaire des ressources ligneuses au Mali. Rapport technique, première phase, Inventaire des formations végétales, Ministère chargé des Ressources Naturelles et de l’Élevage, Direction Nationale des Eaux et Forêts, BDPA/SCETAGRI, CTFT (CIRAD), 115 p. [Google Scholar]
  • Nepveu G., 1994. Le bois matériau d’ingénierie – Variabilité, ARBOLOR, Nancy, pp. 126–182. [Google Scholar]
  • Norimoto M., Tanaka F., Ohogama T., and Ikimune R., 1986. Specific dynamic Young’s modulus and internal friction of wood in the longitudinal direction. Wood Res. Tech. Notes. 22: 53–65. [Google Scholar]
  • Obataya E., Ono T., and Norimoto M., 2000. Vibrational properties of wood along the grain. J. Mater. Sci. 35: 2993–3001. [CrossRef] [Google Scholar]
  • Ono T. and Norimoto M., 1985. Anisotropy of dynamic yong’s modulus and internal friction in wood. Jpn. J. Appl. Phys. 24: 960–964. [CrossRef] [Google Scholar]
  • Ouis D., 2002. On the frequency dependence of the modulus of elasticity of wood. Wood Sci. Technol. 36: 335–346. [CrossRef] [Google Scholar]
  • Richter H.G., 1988. Holz als Rohstoff für den Musikinstrumentenbau, Moeck Verlag, Celle, 44 p. [Google Scholar]
  • Treacy M., Evertsen J., and Dhubháin A., 2000. A comparison of mechanical and physical wood properties of a range of Sitka spruce provenances, COFORD – National Council for Forest Research and Development, Ireland, 35 p. [Google Scholar]
  • Ystad S., 1998. Sound modeling using a combination of physical and signal models. Ph.D. thesis, Université de la Méditerranée-Aix-Marseille II, Marseille, 130 p. [Google Scholar]
  • Walker J.C.F. and Butterfield B.G., 1996,. The importance of the microfibril angle for the processing industries, New Zealand Forestry, pp. 34–40. [Google Scholar]
  • Wegst U.G.K., 2006. Wood for Sound. Am. J. Bot. 93: 1439–1448. [CrossRef] [PubMed] [Google Scholar]
  • Wegst U.G.K., 2008. Bamboo and Wood in Musical Instruments. Ann. Rev. Mat. Res. 38: 323–349. [CrossRef] [Google Scholar]
  • Zobel B.J., and Van Buijtenen J.P., 1989. Wood variation, its causes and control, Springer, 363 p. [Google Scholar]